HAWE Products
Our current product range
Solutions for a World under Pressure
HAWE product range – Contents

<table>
<thead>
<tr>
<th>1</th>
<th>Pumps</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Single pumps</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>Hydraulic power packs</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Valves</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Directional spool valves</td>
<td>80</td>
</tr>
<tr>
<td>2.2</td>
<td>Directional seated valves</td>
<td>120</td>
</tr>
<tr>
<td>2.3</td>
<td>Pressure valves</td>
<td>164</td>
</tr>
<tr>
<td>2.4</td>
<td>Flow valves</td>
<td>208</td>
</tr>
<tr>
<td>2.5</td>
<td>Check valves</td>
<td>236</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Hydraulic cylinders and hydrostatic motors</th>
<th>258</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hydraulic clamps type HSE and HSA</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Axial piston motor type M60N</td>
<td>262</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Hydraulic accessories</th>
<th>264</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diaphragm accumulator type AC</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>Piston type accumulator type HPS</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>Pressure switch type DG</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Pressure filter type PFM</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>Fittings</td>
<td>274</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Electronics</th>
<th>276</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electronic additional components</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>Programmable logic valve control type PLVC</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>Valve controls type CAN-I0, EV2S-CAN</td>
<td>282</td>
</tr>
</tbody>
</table>
Appendix

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic fluids – notes for selection</td>
<td>284</td>
</tr>
<tr>
<td>Formulas and units</td>
<td>290</td>
</tr>
<tr>
<td>Contact offices and representatives</td>
<td>296</td>
</tr>
</tbody>
</table>

Headquarter

HAWE Hydraulik SE
Streitfeldstr. 25
D-81673 München
P.O. Box 800804 D-81608 München
Tel. +49 89 37 91 00 - 1000
Fax: +49 89 37 91 00 - 9 1000
e-mail: info@hawe.de
www.hawe.de
HAWE Hydraulik develops and produces hydraulic components and solutions for many sectors of the machine engineering and plant engineering industries. Fixed and variable displacement pumps, hydraulic power packs, hydraulic pumps, valves, hydraulic accessories and electronic components. The consistent modular system enables quick reaction to customer wishes and the assembly of tailor-made solutions from standard products. Due to a flexible production system, the manufacture and assembly of large quantities is just as possible as a batch size of 1.

The service range includes advice, project planning, comprehensive documentation, construction of prototypes, manufacture and assembly of various quantities, installation, maintenance and service.

All pressurised parts are made of steel. Pressures of up to 700 bar are possible, which above all makes application in mid-pressure ranges particularly safe and long lasting.

Sustainable solutions are a part of the corporate responsibility of HAWE Hydraulik. This is how the company has been operating for years with certified environmental and energy management, and has been systematically implementing occupational safety and health protection. Since 2011, HAWE Hydraulik has been a member of Global Compact, an initiative of the United Nations, thus clearly demonstrating its respect for human rights and labour standards and its commitment to environmental protection and the fight against corruption.

The family-run company HAWE Hydraulik was founded in 1949 and today is comprised of 2,200 employees in the headquarters in Munich, in seven production sites as well as five sales offices in Germany and 14 international subsidiaries. Approximately 30 sales partners in many countries around the globe support the worldwide sales.

In addition to this product overview, further technical information sheets on the individual components are available. To optimise the selection, configuration and specification of the products, HAWE sales staff will be glad to be of assistance (contact details in “Addresses of offices and representatives” attached or info@hawe.de).
HIGH VERTICAL RANGE OF MANUFACTURE ENSURES THE HIGHEST LEVEL OF QUALITY

All dimensions in mm, subject to change!
Our vertical range of manufacture ensures superior quality!

Efficiency:

Example: Machine tools
- Compact hydraulic power packs with small tank capacity
- Zero leakage directional seated valves instead of directional spool valves
- Accumulator charged operation with idle pump circulation

Example: Truck mounted cranes
- Variable displacement axial piston pumps with clever controller technique
- Well-engineered Load-Sensing systems
- Quick response and directional spool valves with minimized leakage

![Image of HAWE Proportional directional spool valve](image1)

HAWE Proportional directional spool valve: Sensible and powerful fine adjustability for all mobile applications with a maximum of robustness. Also in harsh environments and up to 420 bars.

Flexibility:

Example: Tractors for logging and agriculture
- Accurate controls that can be easily customized and extended
- One product covering all functions (boom, supports, steering etc.)
- Various sizes can be combined, additional function can be integrated

Example: Food processing
- Versatile, compact hydraulic power packs
- AC or DC-drive for low and high pressure applications
- All required functions can be implemented via directly mounted modular valve banks

![Image of versatility in applications](image2)

We offer a wide range of various directional seated valves to ensure a safe and powerful functionality of your machine.
Reliability:

Example: Wind energy plants
- Sturdy long-lived components ensure long service life
- Modular design eases maintenance
- Hydraulic controls also for severe ambient conditions (hot, cold, moist, etc.)

Example: Construction machines
- Well proven systems consisting of pump, hydraulic controls, over-center valve and electronics
- Modular electronic controls perfectly fitting the hydraulics
- Various approved solutions for oscillation dampening

Technology:

Example: Tools with hydraulic drive
- High power density via compact design
- Wide range of modular high pressure components (max. 700 bar)
- Two-stage pumps efficiently generate the necessary working pressure

Example: Hydraulic presses
- Hydraulic power controlled reliable and smooth
- Decentralized hydraulic controls via compact hydraulic power packs
- Various solutions for synchronous operation

We provide with our compact hydraulic power packs energy efficient solutions for brake controls.
Pumps

1.1 Single pumps

<p>| Radial piston pump type R, RG and RZ | 12 |
| Variable displacement axial piston pump type V30E | 16 |
| Variable displacement axial piston pump type V30D | 20 |
| Variable displacement axial piston pump type V80M | 24 |
| Variable displacement axial piston pump type V40M | 26 |
| Variable displacement axial piston pump type V60N | 28 |
| Variable displacement axial piston pump type K60N | 32 |
| Air-driven hydraulic pump type LP | 34 |
| Hand pump type H, HE and HD | 36 |</p>
<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/version</th>
<th>Features</th>
<th>(p_{\text{max}}) (bar)</th>
<th>(V_{\text{max}}) (cm(^3)/rev.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R, RG, RZ</td>
<td>Radial piston pump / Dual-stage pump</td>
<td>Single pump, Motor pump, Hydraulic power pack</td>
<td>R 7631: 700</td>
<td>R 7631: 1.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R, RG 6010: 700</td>
<td>R, RG 6010: 4.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R, RG 6011: 700</td>
<td>R, RG 6011: 10.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R, RG 6014: 700</td>
<td>R, RG 6014: 42.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R, RG 6016: 700</td>
<td>R, RG 6016: 64.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Features and benefits:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- High level of efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Compact design</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Max. 14 separate pressure outlets</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Available from the modular product range as a hydraulic power pack with valve banks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HP/LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RZ 7631: 700/200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RZ 6910: 700/200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RZ 6911: 700/200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RZ 6912: 700/200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RZ 6914: 700/200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RZ 6916: 700/200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Nomenclature/Design</td>
<td>Features</td>
<td>p_{max} (bar) (Operation/Peak)</td>
<td>v_{max} (cm3/rev.)</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>--------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>V30D</td>
<td>Variable displacement axial piston pump</td>
<td>Features and benefits:</td>
<td>045: 350/420</td>
<td>045: 45</td>
</tr>
<tr>
<td></td>
<td>Single pump</td>
<td></td>
<td>075: 350/420</td>
<td>075: 75</td>
</tr>
<tr>
<td></td>
<td>Pump combination</td>
<td></td>
<td>095: 350/420</td>
<td>095: 95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>115: 250/300</td>
<td>115: 115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>140: 350/420</td>
<td>140: 140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>160: 250/300</td>
<td>160: 160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250: 350/420</td>
<td>250: 250</td>
</tr>
<tr>
<td>V30E</td>
<td>Variable displacement axial piston pump</td>
<td>Features and benefits:</td>
<td>095: 350/420</td>
<td>095: 95</td>
</tr>
<tr>
<td></td>
<td>Single pump</td>
<td></td>
<td>160: 350/420</td>
<td>160: 160</td>
</tr>
<tr>
<td></td>
<td>Pump combination</td>
<td></td>
<td>270: 350/420</td>
<td>270: 270</td>
</tr>
<tr>
<td>V80M</td>
<td>Variable displacement axial piston pump</td>
<td>Features and benefits:</td>
<td>200: 400/450</td>
<td>200: 202</td>
</tr>
<tr>
<td></td>
<td>Single pump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pump combination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V60N</td>
<td>Variable displacement axial piston pump</td>
<td>Features and benefits:</td>
<td>060: 350/400</td>
<td>060: 60</td>
</tr>
<tr>
<td></td>
<td>Single pump</td>
<td></td>
<td>090: 350/400</td>
<td>090: 90</td>
</tr>
<tr>
<td></td>
<td>Pump combination</td>
<td></td>
<td>110: 350/400</td>
<td>110: 110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>130: 400/450</td>
<td>130: 130</td>
</tr>
<tr>
<td>V40M</td>
<td>Variable displacement axial piston pump</td>
<td>Features and benefits:</td>
<td>028: 250/320</td>
<td>028: 28</td>
</tr>
<tr>
<td></td>
<td>Single pump</td>
<td></td>
<td>045: 380/400</td>
<td>045: 46</td>
</tr>
<tr>
<td></td>
<td>Pump combination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K60N</td>
<td>Fixed displacement axial piston pump</td>
<td>Features and benefits:</td>
<td>012: 400</td>
<td>012: 12.6</td>
</tr>
<tr>
<td></td>
<td>Single pump</td>
<td></td>
<td>017: 400</td>
<td>017: 17.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>025: 400</td>
<td>025: 25.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>034: 400</td>
<td>034: 34.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>047: 400</td>
<td>047: 47.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>064: 400</td>
<td>064: 63.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>084, 984: 400</td>
<td>084, 984: 83.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>108, 9108: 400</td>
<td>108, 9108: 108</td>
</tr>
</tbody>
</table>
Air-driven hydraulic pumps

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>Features</th>
<th>(p_{\text{max}}) (bar)</th>
<th>(V_{\text{max}}) (cm(^3)/stroke)</th>
</tr>
</thead>
</table>

Features and benefits:
- High operating pressures
- Suitable for explosion-proof systems and equipment
- No electrical energy
- Hydraulic power packs with direct valve mounting

Hand pumps

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>Features</th>
<th>(p_{\text{max}}) (bar)</th>
<th>(V_{\text{max}}) (cm(^3)/stroke)</th>
</tr>
</thead>
</table>

Features and benefits:
- Sturdy design
- Hand pumps with integrated tank
- Safety and drain valve
Radial piston pumps are a type of hydraulic pump. They consist of valve-controlled pump cylinders that are arranged radially. The radial piston pump type R, RG and RZ has a closed pump housing. Therefore, besides use as a motor pump outside an oil tank, installation in the container of a hydraulic power pack is also possible. The radial piston pump is available with several pressure outlets which enable the same or several different volumetric flows. Type RZ is a classic dual-stage pump consisting of a radial piston pump and a gear pump. The radial piston pump type RG has plain bearings which have a longer storage life. This type is therefore used in extreme operating conditions. Extremely high volumetric flows can be achieved by arranging up to 6 radials in parallel. When the radial piston pump is used in the hydraulic power pack, it is suitable for use as a highly compact control system. Connection blocks and valve banks can be mounted on the cover plate of the hydraulic power packs.

Features and benefits:
- High level of efficiency
- Compact design
- Max. 14 separate pressure outlets
- Available from the modular product range as a hydraulic power pack with valve banks

Intended applications:
- Press construction
- Jig construction
- Testing and laboratory devices
- Lubricating systems

Design and order coding example

<table>
<thead>
<tr>
<th>Sizes</th>
<th>Delivery flow gear pump [lpm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RZ 0,9</td>
<td>2 - 16</td>
</tr>
</tbody>
</table>

Basic type, delivery flow [lpm]
- Type R (version with roller bearing)
- Type RG (version with plain bearing)
- Type RZ (dual-stage pump)

Additional versions:
- With several pressure ports
- With separate ports for the flow of one or two pump elements ($Q_{max} = 4,4$ lpm)
e.g. as control oil supply
Function

| Single pump type R and RG | Single pump type RZ only high-pressure section, low-pressure section is installed by customer | Single pump type RZ High and low-pressure section | Pump with several pressure outlets (example for a Single pump) |

General parameters and dimensions

Single pump type R and RG

![Diagram of Single pump type R and RG](image)

Single pump type RZ

![Diagram of Single pump type RZ](image)
<table>
<thead>
<tr>
<th>Design</th>
<th>Number of cylinders</th>
<th>Delivery flow Q_{pu} (lpm) (approximate reference value at 1450 rpm) and max. pressure p_{max} (bar)</th>
<th>Dimensions [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>700 bar</td>
<td>550 bar</td>
<td>450 bar</td>
</tr>
<tr>
<td>7631</td>
<td>2</td>
<td>0.18</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.27</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.46</td>
<td>0.7</td>
</tr>
<tr>
<td>6010/6910</td>
<td>1</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>6011/6911</td>
<td>5</td>
<td>1.4</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.1</td>
<td>3.7</td>
</tr>
<tr>
<td>6012/6912</td>
<td>10</td>
<td>2.7</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.0</td>
<td>7.4</td>
</tr>
<tr>
<td>6014/6914</td>
<td>20</td>
<td>6.1</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>8.0</td>
<td>15.0</td>
</tr>
<tr>
<td>6016/6916</td>
<td>42</td>
<td>12.7</td>
<td>22.0</td>
</tr>
</tbody>
</table>

- The data listed represent only a selection of the various different versions
1) Standard motor, design IM B 35 for motor pumps or IM B 5 for hydraulic power packs

Gear pump

<table>
<thead>
<tr>
<th>Size</th>
<th>Delivery flow Q_{pu} [lpm] and max. pressure p_{max} [bar]</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 bar</td>
<td>80 bar</td>
<td>40 ... 60 bar</td>
</tr>
<tr>
<td>/1</td>
<td>5,2</td>
<td>8,8</td>
<td>11,3</td>
</tr>
<tr>
<td>/2</td>
<td>12,3</td>
<td>16</td>
<td>37</td>
</tr>
<tr>
<td>/3</td>
<td>24</td>
<td>110</td>
<td>135</td>
</tr>
</tbody>
</table>

- The data listed represent only a selection of the various different versions
Associated technical data sheets:
- Radial piston pump type R and RG: D 6010
- Motor pump and hydraulic power pack type R and RG: D 6010 H
- Radial piston pumps with several pressure connections type R, RG: D 6010 D, D 6010 DB
- Radial piston pump type R and RG with one main pressure connection and one or two ancillary pressure connections: D 6010 S

Directly mountable valve banks:
- Type VB: Page 130
- Type BWH(N): Page 136
- Type SWR: Page 92

Circuit example:

R 4,0/B 50 A 700 - VB 11 DM - HRHR - 1 - G 24 - V 5,5
Individual pumps

1.1 Variable displacement axial piston pump type V30E

Variable displacement axial piston pumps adjust the geometric delivery volume from maximum to zero. As a result they vary the volumetric flow that is provided to the loads. The axial piston pump type V30E is designed for open circuits in mobile hydraulics and works according to the swash plate principle. It is available with the option of a thru-shaft for operating additional hydraulic pumps in series.

The sturdy pump is particularly suitable for continuous operation in challenging applications. The range of pump controllers allows the axial piston pump to be used in a variety of applications.

Features and benefits:
- Low noise emissions
- Wide controller options
- Full torque available at the second pump in tandem pump applications

Intended applications:
- Machines for forestry and agricultural purposes
- Cranes and lifting equipment
- Construction machines

Design and order coding example

<table>
<thead>
<tr>
<th>V30E</th>
<th>095</th>
<th>R</th>
<th>S</th>
<th>F</th>
<th>N</th>
<th>- 1</th>
<th>- 1</th>
<th>XX</th>
<th>/LSP</th>
<th>/120</th>
<th>- 200</th>
</tr>
</thead>
</table>

- **Pressure specification [bar]**
- **Torque setting [Nm]**
- **Controllers**: See section "Controller" Chapter "Platzhalter"
- **Release**
- **Swash plate angle indicator**: With/without swash plate angle indicator
- **Housing version**: With/without thru-shaft
- **Seal material**
 - NBR (N)
 - EPDM (E)
 - FKM (V, C)
- **Flange version**
 - Flange ISO 3019-2 (G)
 - Flange SAE J744 (F, W)
- **Shaft version**
 - Spline shaft DIN 5480 (D)
 - Parallel key (K)
 - Spline shaft SAE J744 (S, U)
- **Rotating direction**
 - Anti-clockwise (L), clockwise (R)
- **Nominal size**
 - Basic type
Function

<table>
<thead>
<tr>
<th>Single pump</th>
<th>Multiple pump</th>
</tr>
</thead>
</table>

Controller

Pressure controller:
- Pressure controller (P, Pb)
- Electro-proportional pressure controller (P-PMVPS)

Flow controller:
- Load-sensing controller with integrated pressure limitation (LSP, LSPb)
- Load-sensing controller with integrated pressure limitation and electric pump direction switching (LSP-BVPM)
- Electro-hydraulic flow controller with integrated pivoting angle pick-up and control electronics for adjustment of setpoint and actual value (EM.CH)

Power controller:
- Power controller (L)
- Power controller (Lf, Lf1)
General parameters and dimensions

![Diagrams of variable displacement axial piston pump Type V30E](connection locations for clockwise operation)

Parameters

<table>
<thead>
<tr>
<th></th>
<th>Geom. output volume</th>
<th>Nom. pressure</th>
<th>Max. speed</th>
<th>Dimensions [mm] approx.</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(V_g) [cm³/rev]</td>
<td>(p_{nom}) ((p_{max})) [bar]</td>
<td>(n) [rpm]</td>
<td>(L)</td>
<td>(L1)</td>
</tr>
<tr>
<td>V30E - 095</td>
<td>95</td>
<td>350 (420)</td>
<td>2500</td>
<td>296</td>
<td>75</td>
</tr>
<tr>
<td>V30E - 160</td>
<td>160</td>
<td></td>
<td>2100</td>
<td>332</td>
<td>75</td>
</tr>
<tr>
<td>V30E - 270</td>
<td>270</td>
<td></td>
<td>1800</td>
<td>399</td>
<td>88</td>
</tr>
</tbody>
</table>

Ports

<table>
<thead>
<tr>
<th></th>
<th>Pressure port</th>
<th>Suction port</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>V30E - 095</td>
<td>1 1/4" SAE J518</td>
<td>2 1/2" SAE J518</td>
<td>G 3/4</td>
</tr>
<tr>
<td>V30E - 160</td>
<td>1 1/4" SAE J518</td>
<td>2 1/2" SAE J518</td>
<td>G 3/4</td>
</tr>
<tr>
<td>V30E - 270</td>
<td>1 1/2" SAE J518</td>
<td>3" SAE J518</td>
<td>G 1</td>
</tr>
</tbody>
</table>
Associated technical data sheets:
- Variable displacement axial piston pump type V30E: D 7960 E

Similar products:
- Variable displacement axial piston pump type V30D: Page 20
- Variable displacement axial piston pump type V40M: Page 26
- Variable displacement axial piston pump type V60N: Page 28
- Fixed displacement axial piston pump type K60N: Page 32
- Axial piston motor type M60N: Page 262
- Axial piston motor type V80M: Page 24

Suitable proportional directional spool valve:
- Type PSL/PSV size 2, 3 and 5: Page 106
- Type PSLF/PSVF sizes 3, 5 and 7: Page 112

Suitable accessories:
- Proportional amplifier type EV1M3: Page 278
- Programmable logic valve control type PLVC: Page 280

Example circuit:
V30E-270-LSF N-2-1/03-LSN-320
Individual pumps

1.1 Variable displacement axial piston pump type V30D

Variable displacement axial piston pumps operate according to the bent axis principle. They adjust the geometric output volume from maximum to zero. As a result they vary the flow rate that is provided to the loads.

The axial piston pump type V30D is designed for open circuits in industrial hydraulics and works according to the swash plate principle. It is available with the option of a thru-shaft for operating additional hydraulic pumps in series.

The sturdy pump is particularly suitable for continuous operation in challenging applications. The range of pump controllers allows the axial piston pump to be used in a variety of applications.

Features and benefits:
- Low-noise emissions
- Wide controller options
- Full torque available at the second pump in tandem pump applications

Intended applications:
- Presses
- Industrial plants
- Marine cranes and winches
- Power pack assembly

Design and order coding example

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V30D</td>
<td>Variable displacement axial piston pump</td>
</tr>
<tr>
<td>-095</td>
<td>Pressure specification [bar]</td>
</tr>
<tr>
<td>R</td>
<td>Torque setting [Nm]</td>
</tr>
<tr>
<td>SF</td>
<td>Additional versions</td>
</tr>
<tr>
<td>N</td>
<td>e.g. stroke limitation</td>
</tr>
<tr>
<td>-1</td>
<td>Controller</td>
</tr>
<tr>
<td>-1</td>
<td>See section “Controller” Chapter , “Platzhalter”</td>
</tr>
<tr>
<td>XX</td>
<td>Release</td>
</tr>
<tr>
<td>/LN</td>
<td>swash plate angle indicator</td>
</tr>
<tr>
<td>-2</td>
<td>With/without swash plate angle indicator</td>
</tr>
<tr>
<td>/120</td>
<td>Housing version</td>
</tr>
<tr>
<td>-200</td>
<td>With/without thru-shaft</td>
</tr>
<tr>
<td>NBR (N)</td>
<td>Seal material</td>
</tr>
<tr>
<td>EPDM (E)</td>
<td></td>
</tr>
<tr>
<td>FKM (V)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Shaft version/flange version</td>
</tr>
<tr>
<td>S</td>
<td>Spline shaft DIN 5480 (D)</td>
</tr>
<tr>
<td>J744 (S)</td>
<td>Spline shaft SAE J744 (S)</td>
</tr>
<tr>
<td>K</td>
<td>Parallel key (K)</td>
</tr>
<tr>
<td>L</td>
<td>Rotating direction</td>
</tr>
<tr>
<td>R</td>
<td>Anti-clockwise (L), clockwise (R)</td>
</tr>
<tr>
<td>Basic type</td>
<td></td>
</tr>
</tbody>
</table>
Function

Single pump

Multiple pump

Controller

Pressure controller:
- Pressure controller (N)
- Pressure controller with remote-control port (P, Pb)

Flow controller
- Load-sensing controller (LS)
- Load-sensing controller with integrated pressure limitation (LSN)
- Flow controller for setting a constant, speed-independent volumetric flow (Q, Qb)
- Electro-proportional flow controller with rising characteristic (V)
- Hydraulic-proportional flow controller with rising characteristic (VH)

Power controller:
- Power controller (L)
- Power controller, hydraulically adjustable (Lf1)
General parameters and dimensions

![Diagram of a pump with labels for Drain port, Suction port, and Pressure port.](connection locations for clockwise operation)

Parameters

<table>
<thead>
<tr>
<th>Geom. output volume</th>
<th>Nom. pressure</th>
<th>Max speed</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_g [cm³/rev]</td>
<td>p_{nom} (p_{max}) [bar]</td>
<td>n [rpm]</td>
<td>L</td>
<td>L1</td>
</tr>
<tr>
<td>V30D - 045</td>
<td>45</td>
<td>350 (420)</td>
<td>2600</td>
<td>268</td>
</tr>
<tr>
<td>V30D - 075</td>
<td>75</td>
<td>2400</td>
<td>310</td>
<td>80</td>
</tr>
<tr>
<td>V30D - 095</td>
<td>95</td>
<td>2200</td>
<td>341</td>
<td>93</td>
</tr>
<tr>
<td>V30D - 115</td>
<td>115</td>
<td>2000</td>
<td>341</td>
<td>93</td>
</tr>
<tr>
<td>V30D - 140</td>
<td>140</td>
<td>1900</td>
<td>363</td>
<td>90</td>
</tr>
<tr>
<td>V30D - 160</td>
<td>160</td>
<td>1800</td>
<td>412</td>
<td>115</td>
</tr>
<tr>
<td>V30D - 250</td>
<td>265</td>
<td>1300</td>
<td>432</td>
<td>115</td>
</tr>
</tbody>
</table>

1) Higher pressure is possible with reduced geom. delivery flow

Ports

<table>
<thead>
<tr>
<th>Pressure port</th>
<th>Suction port</th>
<th>Drain port</th>
</tr>
</thead>
<tbody>
<tr>
<td>V30D - 045</td>
<td>3/4" SAE J518</td>
<td>1 1/2" SAE J518</td>
</tr>
<tr>
<td>V30D - 075</td>
<td>1" SAE J518</td>
<td>2" SAE J518</td>
</tr>
<tr>
<td>V30D - 095</td>
<td>1 1/4" SAE J518</td>
<td>2" SAE J518</td>
</tr>
<tr>
<td>V30D - 115</td>
<td>1 1/4" SAE J518</td>
<td>2" SAE J518</td>
</tr>
<tr>
<td>V30D - 140</td>
<td>1 1/4" SAE J518</td>
<td>2 1/2" SAE J518</td>
</tr>
<tr>
<td>V30D - 160</td>
<td>1 1/4" SAE J518</td>
<td>2 1/2" SAE J518</td>
</tr>
<tr>
<td>V30D - 250</td>
<td>1 1/2" SAE J518</td>
<td>3" SAE J518</td>
</tr>
</tbody>
</table>
Example circuit:
V30D-250-LSF N-2-1/03-LSN-320

Associated technical data sheets:
- Variable displacement axial piston pump type V30D: D 7960.

Similar products:
- Variable displacement axial piston pump type V30E: Page 16
- Variable displacement axial piston pump type V40M: Page 26
- Variable displacement axial piston pump type V60N: Page 28
- Variable displacement axial piston pump type V60N: Page 28
- Variable displacement axial piston pump type V80M: Page 24

Suitable proportional directional spool valve:
- Type PSL/PSV 2, 3 and 5: Page 106
- Type PSLF/PSVF 3, 5 and 7: Page 112

Additional electrical components:
- Proportional amplifier: Page 278
- Programmable logic valve control type PLVC: Page 280
- CAN node type CAN-IO: Page 282
- Other electronic accessories See "Electronics"
Variable displacement axial piston pumps adjust the geometric delivery volume from maximum to zero. As a result they vary the volumetric flow that is provided to the loads. The axial piston pump type V80M is designed for open circuits in mobile hydraulics and works according to the swash plate principle. It is available with the option of a thru-shaft for operating additional hydraulic pumps in series. The sturdy pump is particularly suitable for continuous operation in challenging applications. The range of pump controllers allows the axial piston pump to be used in a variety of applications.

Features and benefits:
- High speed
- High nominal pressure
- Less installation space
- Full torque available at the second pump in tandem pump applications

Intended applications:
- Machines for forestry and agricultural purposes
- Cranes and lifting equipment
- Construction machines

Design and order coding example

<table>
<thead>
<tr>
<th>V80M</th>
<th>- 200</th>
<th>R</th>
<th>S</th>
<th>F</th>
<th>N</th>
<th>- 1</th>
<th>- 1</th>
<th>XX</th>
<th>/LN</th>
<th>-2</th>
<th>/120</th>
<th>- 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure specification [bar]</td>
<td>Torque setting [Nm]</td>
<td></td>
</tr>
<tr>
<td>Controller</td>
<td>See section "Controller"</td>
<td></td>
</tr>
<tr>
<td>Release</td>
<td>swash plate angle indicator With/without swash plate angle indicator</td>
<td></td>
</tr>
<tr>
<td>Versions with housing</td>
<td>With/without thru-shaft</td>
<td></td>
</tr>
<tr>
<td>Seals</td>
<td>NBR (N)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FKM (V)</td>
<td></td>
</tr>
<tr>
<td>Flange version</td>
<td>DIN (W)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAE (F)</td>
<td></td>
</tr>
<tr>
<td>Shaft version</td>
<td>Spline shaft (DIN 5480) (D)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spline shaft and flange SAE (S)</td>
<td></td>
</tr>
<tr>
<td>Rotating direction</td>
<td>Counter clockwise (L), clockwise (R)</td>
<td></td>
</tr>
<tr>
<td>Nominal size</td>
<td></td>
</tr>
<tr>
<td>Basic type</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td></td>
</tr>
</tbody>
</table>

Single pump Multiple pump
Controller

Pressure controller:
- Pressure controller (N)

Flow controller:
- Load-sensing controller (LSN)

Power controller:
- Power controller (L)

General parameters and dimensions

![Diagram of pump connections](connection-locations-for-clockwise-operation)

Parameters

<table>
<thead>
<tr>
<th></th>
<th>Geom. output volume V_g [cm³/rev]</th>
<th>Nominal pressure p_{nom} (p_{max}) [bar]</th>
<th>Self-suction speed n [min⁻¹]</th>
<th>Ports</th>
<th>Drain port</th>
<th>Suction port</th>
<th>Pressure port</th>
<th>m [kg] (with controller)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V80M - 200</td>
<td>200</td>
<td>400 (450)</td>
<td>1800</td>
<td>G 1</td>
<td>3"</td>
<td>1 1/2"</td>
<td></td>
<td>130 (136)</td>
</tr>
</tbody>
</table>

Circuit example:

![Circuit diagram](circuit-example)

Associated technical data sheets:
- Variable displacement axial piston pump V80M: D 7962 M
- Variable displacement axial piston pump type V40M: Page 26
- Variable displacement axial piston pump type V60N: Page 28
- Fixed displacement axial piston pump type K60N: Page 32
- Axial piston motor type M60N: Page 262

Suitable prop. directional spool valve:
- Type PSL/PSV size 2, 3 and 5: Page 106
- Type PSLF/PSVF sizes 3, 5 and 7: Page 112

Suitable accessories:
- Proportional amplifier type EV1M3: "Electronic accessory components"
- Programmable logic valve control type PLVC: Page 280
Variable displacement axial piston pumps operate according to the bent axis principle. They adjust the geometric output volume from maximum to zero. As a result they vary the flow rate that is provided to the loads.

The axial piston pump type V40M is designed for open circuits in mobile hydraulics and works according to the swash plate principle. It is available with the option of a thru-shaft for operating additional hydraulic pumps in series.

The pump is normally attached to the power take-off of diesel engines. The range of pump controllers allows the axial piston pump to be used in a variety of applications.

Features and benefits:
- Optimized power-to-weight ratio
- High self-suction speed
- Different shaft and flange versions

Intended applications:
- Machines for forestry and agricultural purposes
- Cranes and lifting equipment
- Truck-mounted concrete pumps
- Municipal trucks

Design and order coding example

<table>
<thead>
<tr>
<th>V40M</th>
<th>045</th>
<th>R</th>
<th>T</th>
<th>X</th>
<th>V</th>
<th>-2</th>
<th>-0</th>
<th>-00</th>
<th>/LS-DA</th>
<th>-C 23</th>
</tr>
</thead>
</table>

Thru-shaft version

Controllers
- Load-sensing controller
 - Load-sensing controller with integrated pressure limitation (LS-DA)

Pressure controller
- Electro-proportional pressure controller with falling characteristic (P1R1)

Release
- Additional function
 - Axial ports
 - Radial ports with thru-shaft
 - Radial ports

Housing version
- Seal material: FKM (V)
- Flange version: Flange SAE-B 2-hole J 744 (X)
- Shaft version: Spline shaft SAE-B J 744 (H)
 - Spline shaft SAE-BB J 744 (T)
- Rotating direction: Anti-clockwise (L), clockwise (R)

Nominal size
- 028: Medium pressure version (250 bar)
- 028 H: High pressure version (380 bar)
- 045: Medium pressure version (250 bar)
- 045 H: High pressure version (380 bar)

Basic type
Function

General parameters and dimensions

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Geom. output volume</th>
<th>Nom. pressure</th>
<th>Self-suction speed</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_g [cm³/rev]</td>
<td>p_{nom} (p$_{max}$) [bar]</td>
<td>n [rpm]</td>
<td>L</td>
<td>L1</td>
</tr>
<tr>
<td>V40M - 028</td>
<td>28,7</td>
<td>250 (320)</td>
<td>3200</td>
<td>182</td>
<td>41</td>
</tr>
<tr>
<td>V40M - 028 H</td>
<td></td>
<td>380 (400)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V40M - 045</td>
<td>46,5</td>
<td>250 (320)</td>
<td>2900</td>
<td>212</td>
<td>46</td>
</tr>
<tr>
<td>V40M - 045 H</td>
<td></td>
<td>380 (400)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ports

<table>
<thead>
<tr>
<th>Ports</th>
<th>Drain port T.</th>
<th>LS connection</th>
<th>Suction port</th>
<th>Pressure port P</th>
</tr>
</thead>
<tbody>
<tr>
<td>V40M - 028</td>
<td>3/4-16 UNF-2B</td>
<td>M12 x 1.5</td>
<td>1 1/4" SAE J518</td>
<td>3/4" SAE J518</td>
</tr>
<tr>
<td>V40M - 028 H</td>
<td></td>
<td>M12 x 1.5</td>
<td>1 1/2" SAE J518</td>
<td>1" SAE J518</td>
</tr>
<tr>
<td>V40M - 045</td>
<td>7/8-14 UNF-2B</td>
<td>M12 x 1.5</td>
<td>1 1/2" SAE J518</td>
<td>1" SAE J518</td>
</tr>
<tr>
<td>V40M - 045 H</td>
<td></td>
<td>M12 x 1.5</td>
<td>1 1/2" SAE J518</td>
<td>1" SAE J518</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Variable displacement axial piston pump type V40M: [D 7961](#)

Similar products:
- Variable displacement axial piston pump type V60N: [Page 28](#)
- Variable displacement axial piston pump type V30D: [Page 20](#)
- Variable displacement axial piston pump type V30E: [Page 16](#)
- Fixed displacement axial piston pump type K60N: [Page 32](#)
- Axial piston motor type M60N: [Page 262](#)

Prop. directional spool valve:
- Type PSL/PSV size 2, 3 and 5: [Page 106](#)
- Type PSLF/PSVF sizes 3, 5 and 7: [Page 112](#)

Load holding valves:
- Type LHK, LHDV, LHT: [Page 204](#)
Variable displacement axial piston pumps operate according to the bent axis principle. They adjust the geometric output volume from maximum to zero. As a result they vary the flow rate that is provided to the loads.

The axial piston pump type V60N is designed for open circuits in mobile hydraulics and works according to the swash plate principle. It is available with the option of a thru-shaft for operating additional hydraulic pumps in series. The pump is fitted above all to the power take-off on commercial vehicle transmissions. The range of pump controllers allows the axial piston pump to be used in a variety of applications.

Features and benefits:
- Optimized power-to-weight ratio
- High self-suction speed
- Wide controller options

Intended applications:
- Municipal trucks
- Cranes and lifting equipment
- Machines for forestry and agricultural purposes
- Truck-mounted concrete pumps

Design and order coding example

<table>
<thead>
<tr>
<th>V60N</th>
<th>- 110</th>
<th>R</th>
<th>S</th>
<th>F</th>
<th>N</th>
<th>- 1</th>
<th>0</th>
<th>- 03</th>
<th>/LSNR</th>
<th>-2</th>
<th>- 320</th>
</tr>
</thead>
</table>

Pressure specification [bar]

- **Controller**: See section "Controller" Chapter , "Platzhalter"

- **Release**
- **Housing version**
 - Axial ports
 - Radial ports with thru-shaft
 - Radial ports

- **Seal material**
 - NBR (N), FKM (V)

- **Flange version**
 - Flange ISO 7653-1985 (Y, P)
 - Flange ISO 3019-2 (G)
 - Flange SAE J744 (X, Z, F)

- **Shaft version**
 - ISO 14 parallel key splined shaft (D)
 - Spline shaft DIN 5480 (M)
 - Spline shaft SAE J744 (H, U, T, S, Q)

- **Rotating direction**
 - Anti-clockwise (L), clockwise (R)

Nominal size

- **Nominal size**

Basic type
Function

- Pressure controller (NR, NXR)
- Electro-proportional pressure controller with rising characteristic (PR)
- Electro-proportional pressure controller with falling characteristic (P1R)

Flow controller
- Load-sensing controller with integrated pressure limitation (LSNR, LSNRT)
- Flow controller for setting a constant, speed-independent volumetric flow (QNR)
- Electro-proportional flow controller with rising characteristic (V)
- Electro-proportional flow controller with falling characteristic (V1)

Power controller
- Power controller (L, /ZL)
General parameters and dimensions

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Geom. output volume</th>
<th>Nom. pressure (p nom)</th>
<th>Max. speed</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vg [cm³/rev]</td>
<td>pnom (p max) [bar]</td>
<td>n [rpm]</td>
<td>L</td>
<td>L1</td>
</tr>
<tr>
<td>V60N - 060</td>
<td>60</td>
<td>350 (400)</td>
<td>2500</td>
<td>254</td>
<td>55</td>
</tr>
<tr>
<td>V60N - 090</td>
<td>90</td>
<td>2300</td>
<td>278</td>
<td>55</td>
<td>184</td>
</tr>
<tr>
<td>V60N - 110</td>
<td>110</td>
<td>2200</td>
<td>280</td>
<td>55</td>
<td>194</td>
</tr>
<tr>
<td>V60N - 130</td>
<td>130</td>
<td>400 (450)</td>
<td>2100</td>
<td>270</td>
<td>55</td>
</tr>
</tbody>
</table>

Ports

<table>
<thead>
<tr>
<th>Pressure port P</th>
<th>Suction port S</th>
<th>Drain port D</th>
<th>LS connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>V60N - 060</td>
<td>G 3/4</td>
<td>G 3/4</td>
<td>G 1/4</td>
</tr>
<tr>
<td>V60N - 090</td>
<td>G 1/2" SAE J518</td>
<td>G 3/4</td>
<td>G 1/4</td>
</tr>
<tr>
<td>V60N - 110</td>
<td>G 1/2" SAE J518</td>
<td>G 3/4</td>
<td>G 1/4</td>
</tr>
<tr>
<td>V60N - 130</td>
<td>G 1/2" SAE J518</td>
<td>G 3/4</td>
<td>G 1/4</td>
</tr>
</tbody>
</table>
Example circuit

V60N-130 RSFN-1-0-0.00/LSNR-2-250

PSV 31/D280-2
- A 2 L 25/25/EA1/2
- A 2 H 40/40/EA1/2 DRH
- A 2 L 25/25/EA1/2
- A 2 H 3/3 A 100 B 100/EA1/2 AL-O-D 4/120-BL-O-D 4/120
- A 2 H 3/3/EA1/2 DRH
- E 18-G 24

PSV 31-1
- A2 L 25/25/EA1/2
- A2 L 25/25/EA1/2
- A2 H 3/3/EA1/2 DRH
- A2 H 3/3/EA1/2 DRH
- E 1 - G24

Associated technical data sheets:
- Variable displacement axial piston pump type V60N: D 7960 N

Similar products:
- Variable displacement axial piston pumps type V40M: Page 26
- Variable displacement axial piston pump type V30E: Page 16
- Variable displacement axial piston pump type V30D: Page 20
- Axial piston motor type M60N: Page 262
- Variable displacement axial piston pump type V80M: Page 24
- Fixed displacement axial piston pump type K60N: Page 32

Suitable prop. directional spool valves:
- Type PSL/PSV size 2, 3 and 5: Page 106
- Type PSLF/PSVF sizes 3, 5 and 7: Page 112

Suitable load-holding valves:
- Type LHK, LHDV, LHT: Page 204
Individual pumps

1.1 Variable displacement axial piston pump type K60N

Fixed displacement axial piston pumps operate according to the bent axis principle. They have a constant output volume and therefore deliver a constant flow rate at a specific rotation speed.

The axial piston pump type K60N is designed for open circuits in mobile hydraulics and operates based on the bent axis principle. The pump is fitted mainly to the power take-off on commercial vehicle transmissions.

Features and benefits:
- Good performance/weight ratio
- High self-suction speed
- Different shaft and flange versions

Intended applications:
- Machines for forestry and agricultural purposes
- Cranes and lifting equipment
- Truck-mounted concrete pumps
- Municipal trucks

Nomenclature:
- Fixed displacement axial piston pump

Design:
- Single pump

Design and order coding example

<table>
<thead>
<tr>
<th>K60N</th>
<th>064</th>
<th>R</th>
<th>S</th>
<th>F</th>
<th>N</th>
<th>- S - F12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional versions: Bypass valve
- NBR (N), FKM (V)

Seal material:
- DIN ISO 7653 (Y)
- SAE-C, SAE-B J 744 (F)

Flange version:
- DIN ISO 7653 (Y)
- SAE-C, SAE-B J 744 (F)

Shaft version:
- ISO 14 parallel key splined shaft (D)
- SAE-C, SAE-B J 744 spline shaft (S)

Rotating direction:
- Counter clockwise (L), clockwise (R)

Nominal size:

Function
General parameters and dimensions

![Diagram of variable displacement axial piston pump type K60N](image)

<table>
<thead>
<tr>
<th></th>
<th>Geom. output volume</th>
<th>Nom. pressure (p<sub>nom</sub>) [bar]</th>
<th>Self-suction speed [rpm]</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V<sub>g</sub> [cm<sup>3</sup>/rev]</td>
<td>n [rpm]</td>
<td>L</td>
<td>L<sub>1</sub></td>
<td>H</td>
</tr>
<tr>
<td>K60N - 012</td>
<td>12,6</td>
<td>3300</td>
<td>207</td>
<td>48</td>
<td>145</td>
</tr>
<tr>
<td>K60N - 017</td>
<td>17,0</td>
<td>3200</td>
<td>209</td>
<td>53</td>
<td>156</td>
</tr>
<tr>
<td>K60N - 025</td>
<td>25,4</td>
<td>2550</td>
<td>209</td>
<td>53</td>
<td>156</td>
</tr>
<tr>
<td>K60N - 034</td>
<td>34,2</td>
<td>2250</td>
<td>246</td>
<td>67</td>
<td>185</td>
</tr>
<tr>
<td>K60N - 040</td>
<td>41,2</td>
<td>2200</td>
<td>246</td>
<td>67</td>
<td>185</td>
</tr>
<tr>
<td>K60N - 047</td>
<td>47,1</td>
<td>2200</td>
<td>246</td>
<td>67</td>
<td>185</td>
</tr>
<tr>
<td>K60N - 056</td>
<td>56,0</td>
<td>2100</td>
<td>246</td>
<td>67</td>
<td>185</td>
</tr>
<tr>
<td>K60N - 064</td>
<td>63,6</td>
<td>2050</td>
<td>246</td>
<td>67</td>
<td>185</td>
</tr>
<tr>
<td>K60N - 084</td>
<td>83,6</td>
<td>1700</td>
<td>276</td>
<td>72</td>
<td>212</td>
</tr>
<tr>
<td>K60N - 090</td>
<td>90,7</td>
<td>1700</td>
<td>276</td>
<td>72</td>
<td>212</td>
</tr>
<tr>
<td>K60N - 108</td>
<td>108,0</td>
<td>1700</td>
<td>276</td>
<td>72</td>
<td>212</td>
</tr>
<tr>
<td>K60N - 130</td>
<td>130,0</td>
<td>1600</td>
<td>276</td>
<td>72</td>
<td>212</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Fixed displacement axial piston pump type K60N: D 7960 K
- Similar products:
 - Variable displacement axial piston pump type V30D: Page 20
 - Variable displacement axial piston pump type V30E: Page 16
 - Variable displacement axial piston pump type V40M: Page 26
 - Variable displacement axial piston pump type V60N: Page 28
 - Variable displacement axial piston pump type V80M: Page 24
 - Axial piston motor type M60N: Page 262

Suitable prop. directional spool valves:
- Type PSL/PSV size 2, 3 and 5: Page 106
- Type PSLF/PSVF sizes 3, 5 and 7: Page 112

Suitable load-holding valves:
- Type LHK, LHDV, LHT: Page 204
1.1 Air-driven hydraulic pump type LP

Air-driven hydraulic pumps are pneumatically driven, reciprocally acting plunger pumps. They operate as pneumatic pressure boosters with oscillating movement and automatic stroke reversal control.

The air-driven hydraulic pump type LP can generate up to 1500 bar. It is available as a single pump or as a hydraulic power pack with different tank sizes and valve banks. The delivery flow is dependent on the air pressure set and the flow resistance currently present. It can decay to standstill.

Applications are in laboratory presses, in fixture design, in lubrication systems or in potentially explosive atmospheres.

Features and benefits:
- High operating pressures
- Suitable for explosion-proof systems and equipment
- No electrical energy
- Hydraulic power packs with direct valve mounting

Intended applications:
- Construction and construction materials machinery
- Fixture design
- Testing and laboratory equipment

Design and order coding example

<table>
<thead>
<tr>
<th>LP 125 - 16</th>
<th>E /S 81</th>
</tr>
</thead>
</table>

- **Additional elements**
 - Suction parts for hydraulic pumps

- **Design**
 - **Hydraulic pump**
 - Ready-to-connect version
 - Individual version for self-installation

- **Basic type, size**
 - Type LP, size 80, 125, 160

Function
General parameters and dimensions

Basic type and size

<table>
<thead>
<tr>
<th>Basic type and size</th>
<th>(p_{\text{max}}) [bar]</th>
<th>(\frac{V_{\text{max}}}{V_{\text{hydr}}})</th>
<th>Geom. volume per double stroke (V_{\text{hydr}}) [cm³]</th>
<th>Tapped port (air) Pipe diameter for pressure connection (hydr)</th>
<th>Dimensions [mm]</th>
<th>(m) [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP80-</td>
<td>8</td>
<td>1 : 200</td>
<td>1.5</td>
<td>G 1/4 (\varnothing 6) mm</td>
<td>H</td>
<td>H1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>240</td>
<td>1 : 24</td>
<td>6</td>
<td></td>
<td>159</td>
<td>114</td>
</tr>
<tr>
<td>LP125-</td>
<td>8</td>
<td>1 : 243</td>
<td>2</td>
<td>G 3/8 (\varnothing 8) mm, (\varnothing 10) mm</td>
<td>228</td>
<td>136</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>160</td>
<td>1 : 16</td>
<td>28.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP160-</td>
<td>8</td>
<td>1 : 400</td>
<td>2</td>
<td>G 1/2 (\varnothing 8) mm, (\varnothing 10) mm</td>
<td>228</td>
<td>136</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>265</td>
<td>1 : 24</td>
<td>28.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associated technical data sheets:

- Air-driven hydraulic pump type LP: D 7280
- Hydraulic power pack type LP: D 7280 H

Valve banks:

- Type VB: [Page 130](#)
- Type BWH(N): [Page 136](#)
Individual pumps

1.1 Hand pump type H, HE and HD

Hand pumps are a type of hydraulic pump. They generate a flow rate manually. The hand pump type H and HE is single-acting. It draws in oil in one direction and pumps it in the opposite direction. The hand pump type HD is double-acting. It pumps and draws in the same quantity of oil in the pressure line during the forward and backward movement of the hand lever. The hand pump type H, HE and HD is available for pipe connection and manifold mounting.

The hand pump is particularly suitable as an emergency pump or for test benches.

Features and benefits:
- Sturdy design
- Hand pumps with integrated tank
- Safety and drain valve

Intended applications:
- Shipbuilding
- Mining machinery
- Fixture design
- Testing and laboratory equipment

Design and order coding example

<table>
<thead>
<tr>
<th>HD 13</th>
<th>AS</th>
<th>- K 0,5</th>
<th>- 110</th>
</tr>
</thead>
</table>

Pressure setting (bar)

With/without tank

Usable volume \(V_{\text{use}} \): 0,35 l and 0,5 l

Additional elements
- Drain valve (A)
- Pressure limiting valve (fixed or manually adjustable) (S)

Basic type, size
- Type H (single-acting, open design)
- Type HE (single-acting, encapsulated design)
- Type HD (double-acting, encapsulated design)

- With/without pressure resistant suction port
- Versions for manifold mounting

Function

Design with pressure limiting valve and drain valve

Nomenclature:
- Piston pump

Design:
- Single acting hand pump
- Double acting hand pump

\(p_{\text{max}} \): 150 ... 800 bar

\(V_{\text{max}} \): 4 ... 64 cm³/stroke
General parameters and dimensions

<table>
<thead>
<tr>
<th></th>
<th>p_{max} [bar]</th>
<th>V_{max} [cm³/stroke]</th>
<th>Tapped ports (BSPP)</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 16</td>
<td>350</td>
<td>6</td>
<td>G 1/4</td>
<td>3.1</td>
</tr>
<tr>
<td>H 20</td>
<td>220</td>
<td>9.4</td>
<td>G 1/4</td>
<td></td>
</tr>
<tr>
<td>H 25</td>
<td>150</td>
<td>14.7</td>
<td>G 1/4</td>
<td>3.1</td>
</tr>
<tr>
<td>HE 3</td>
<td>800</td>
<td>3</td>
<td>G 1/4</td>
<td>3.1</td>
</tr>
<tr>
<td>HE 3</td>
<td>800</td>
<td>3</td>
<td>G 1/4 and G 3/8</td>
<td>4.8</td>
</tr>
<tr>
<td>HD 13</td>
<td>350</td>
<td>13</td>
<td>G 1/4</td>
<td></td>
</tr>
<tr>
<td>HD 20</td>
<td>220</td>
<td>20</td>
<td>G 1/4</td>
<td></td>
</tr>
<tr>
<td>HD 30</td>
<td>150</td>
<td>30</td>
<td>G 1/4</td>
<td></td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Manual pump type H, HD and HE: D 7147/1
1.2 Hydraulic power packs

<table>
<thead>
<tr>
<th>Hydraulic Power Pack Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact hydraulic power pack type NPC</td>
<td>44</td>
</tr>
<tr>
<td>Compact hydraulic power pack type HC and HCW</td>
<td>46</td>
</tr>
<tr>
<td>Compact hydraulic power pack type KA and KAW</td>
<td>50</td>
</tr>
<tr>
<td>Compact hydraulic power pack type MP and MPN</td>
<td>54</td>
</tr>
<tr>
<td>Compact hydraulic power pack type HK, HKF and HKL</td>
<td>58</td>
</tr>
<tr>
<td>Radial piston pump type R, RG and RZ</td>
<td>62</td>
</tr>
<tr>
<td>Air-driven hydraulic pump type LP</td>
<td>66</td>
</tr>
<tr>
<td>Connection block type A, B and C</td>
<td>68</td>
</tr>
<tr>
<td>Valve bank (nominal size 6) type BA</td>
<td>70</td>
</tr>
<tr>
<td>Valve bank (directional seated valve) type BVH</td>
<td>76</td>
</tr>
</tbody>
</table>
Compact hydraulic power pack

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>Tank volume (l)</th>
<th>(p_{\text{max}}) (bar)</th>
<th>(V_{\text{max}}) (cm³/rev.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPC</td>
<td>Radial piston pump</td>
<td>Fill volume 1.0</td>
<td>11: 750</td>
<td>11: 0.46</td>
</tr>
<tr>
<td></td>
<td>• With integrated electric motor</td>
<td></td>
<td>12: 750</td>
<td>12: 0.46</td>
</tr>
<tr>
<td></td>
<td>• Direct current supply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Version</td>
<td>Usable volume 0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oil immersed compact hydraulic power pack for short period operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC, HCW</td>
<td>Radial piston or gear pump</td>
<td>Fill volume - vertical approx. 1.16-2.5</td>
<td>HP/LP: 1: 700/180</td>
<td>1: 0.76</td>
</tr>
<tr>
<td></td>
<td>• With integrated electric motor</td>
<td>- horizontal approx. 0.95-2.3</td>
<td>2: 700/180</td>
<td>2: 1.59</td>
</tr>
<tr>
<td></td>
<td>• 3-phase or AC version</td>
<td>Usable volume - vertical approx. 0.50-1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Version</td>
<td>- horizontal approx. 0.50-1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oil immersed compact hydraulic power pack for intermittent operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KA, KAW</td>
<td>Radial piston or gear pump</td>
<td>KA 2 Fill volume approx. 3.9-11.1</td>
<td>HP/LP: 2: 700/180</td>
<td>HP/LP: 2: 3.61/7.9</td>
</tr>
<tr>
<td></td>
<td>• With integrated electric motor</td>
<td></td>
<td>4: 700/180</td>
<td>4: 9.17/30.2</td>
</tr>
<tr>
<td></td>
<td>• 3-phase or AC version</td>
<td>Usable volume - vertical approx. 1.85-8.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Version</td>
<td>- horizontal approx. 1.5-4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oil immersed compact hydraulic power pack for intermittent operation</td>
<td>KA 4 Fill volume approx. 13-31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Usable volume - vertical approx. 5-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- horizontal approx. 6-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP, MPN</td>
<td>Radial piston pump and/or gear pump</td>
<td>Fill volume approx. 17-100</td>
<td>HP/LP: MP - 1: 700/220</td>
<td>HP/LP: MP - 1: 0.95/4.76</td>
</tr>
<tr>
<td></td>
<td>• With integrated motor</td>
<td></td>
<td>MP - 2: 700/200</td>
<td>MP - 2: 1.59/26</td>
</tr>
<tr>
<td></td>
<td>• Single- or dual-circuit pump</td>
<td></td>
<td>MP - 4: 700/220</td>
<td>MP - 4: 9.17/60</td>
</tr>
<tr>
<td></td>
<td>Version</td>
<td>Usable volume approx. 10-75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oil immersed compact hydraulic power pack for intermittent or load/no load operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK, HKF, HKL</td>
<td>Radial piston pump and/or gear pump</td>
<td>Fill volume approx. 2.77</td>
<td>HP/LP: HK - 2: 700</td>
<td>HP/LP: HK - 2: 1.59</td>
</tr>
<tr>
<td></td>
<td>• With integrated motor</td>
<td>Usable volume approx. 0.85</td>
<td>HK - 3: 700/180</td>
<td>HK - 3: 4.58/4.8</td>
</tr>
<tr>
<td></td>
<td>• 3-phase version</td>
<td>HK - 4: 700/180</td>
<td>HK - 4: 9.17/17.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Version</td>
<td>HK 3 Fill volume approx. 4.65-6.1</td>
<td>HKF - 4: 700/180</td>
<td>HKF - 4: 9.17/17.0</td>
</tr>
<tr>
<td></td>
<td>• Oil immersed compact hydraulic power pack for continuous and intermittent operation</td>
<td>Usable volume approx. 1.45-2.90</td>
<td>HKL - 4: 700/180</td>
<td>HKL - 3: 6.11/14.5</td>
</tr>
<tr>
<td></td>
<td>HK 4, HKF 4 Fill volume approx. 5.8-15.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oil immersed compact hydraulic power pack for continuous and intermittent operation</td>
<td>Usable volume approx. 1.9-11.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HKL 3 Fill volume approx. 3.7-13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oil immersed compact hydraulic power pack for continuous and intermittent operation</td>
<td>Usable volume approx. 1.7-9.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hydraulic power packs

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>Tank volume (l)</th>
<th>p_{max} (bar)</th>
<th>v_{max} (cm3/rev.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R, RG, RZ</td>
<td>Radial piston pump</td>
<td>Fill volume approx. 9-470</td>
<td>HP/LP: R 7631: 700</td>
<td>R 7631: 1.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R, RG 6010: 700</td>
<td>R, RG 6010: 4.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R, RG 6011: 700</td>
<td>R, RG 6011: 10.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R, RG 6014: 700</td>
<td>R, RG 6014: 42.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R, RG 6016: 700</td>
<td>R, RG 6016: 64.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RZ 7631: 700/220</td>
<td>RZ 7631: 1.59/7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RZ 6010: 700/200</td>
<td>RZ 6010: 4.58/26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RZ 6011: 700/200</td>
<td>RZ 6011: 10.7/89.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RZ 6012: 700/200</td>
<td>RZ 6012: 21.39/89.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RZ 6014: 700/200</td>
<td>RZ 6014: 42.78/89.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RZ 6016: 700/200</td>
<td>RZ 6016: 64.18/89.6</td>
</tr>
<tr>
<td>LP</td>
<td>Air-driven hydraulic pump</td>
<td>Fill volume approx. 5.8-33</td>
<td>80: 700</td>
<td>80: 6.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125: 700</td>
<td>125: 28.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>160: 700</td>
<td>160: 28.30</td>
</tr>
</tbody>
</table>
Connection blocks/mounted valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>p_{max} (bar)</th>
<th>q_{max} (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, C</td>
<td>Connection blocks
• For completion of hydraulic power packs
Version
• Add-on valve enabling pipe connection or mounting of valves</td>
<td>700</td>
<td>20</td>
</tr>
<tr>
<td>BA</td>
<td>Valve bank
• Directional spool valve
• Directional seated valve
Version
• Valve bank enabling pipe connection
Actuation
• solenoid, pressure-actuated or manual, mechanical</td>
<td>2: 500</td>
<td>2: 50</td>
</tr>
<tr>
<td>BVH</td>
<td>Valve bank
• Directional seated valve
• Zero leakage
Version
• Valve bank enabling pipe connection</td>
<td>11: 400</td>
<td>11: 20</td>
</tr>
</tbody>
</table>
Efficiency from the modular system

Hydraulics are based on a simple principle: using fluid pressure media, power is transmitted and motion generated. This principle can be transferred to a broad range of applications. The product range in the modular system – the result of the consistent development philosophy of HAWE Hydraulik – enables the creation of tailor-made solutions and systems.

Standardised components and individual combination options ensure increased efficiency at the optimum cost-benefit ratio.

- Various components complement each other to form a complete product range
- Enables solutions tailor-made to the customer

Compact hydraulic power packs

Type NPC
for compact controllers
with 5...10% operating time
\(P_{\text{max}} = 700 \text{ bar}, \quad Q_{\text{max}} = 2.1 \text{ lpm}\)

Type HC, HCW, KA, KAW
for compact controllers
with 10...30% operating time
\(P_{\text{max}} = 700 \text{ bar}, \quad Q_{\text{max}} = 20.1 \text{ lpm}\)
in 4 sizes, also as dual-circuit pump

Type MP, MPN, MPW, MPNW
for controls in standby mode or load/no load operation
\(P_{\text{max}} = 700 \text{ bar}, \quad Q_{\text{max}} = 15 \text{ lpm}\)
in 5 sizes, also as dual-circuit pump, tank size can be selected

Type HK, HKF, HKL
for compact controls also in continuous operation
\(P_{\text{max}} = 700 \text{ bar}, \quad Q_{\text{max}} = 16 \text{ lpm}\)
in 3 sizes, also as dual and triple-circuit pump
Order examples

| NPC 11 K/0,31 - 1/320 - R - 24 |
| KA 44 LFK/H 2,5 |
| MPN 44 - HZ 0,9/12,3 - B 25.20 |
| HK 449 ST/1 - H 5,0 - C 16 - |

Compact hydraulic power packs

| B31/450 - EM11 V - 13 - G 24 |
| NE 21 - 320/25 - |
| AS 1 F 2/300 - |
| AP 34 - 43/24 - |

Directly mounted valve banks

| NPC 11 K/0,31 - 1/320 - R - 24 |
| KA 44 LFK/H 2,5 |
| MPN 44 - HZ 0,9/12,3 - B 25.20 |
| HK 449 ST/1 - H 5,0 - C 16 - |

The practical modular system enables completely individual combinations.

Order examples

| B31/450 - EM11 V - 13 - G 24 |
| NE 21 - 320/25 - |
| AS 1 F 2/300 - |
| AP 34 - 43/24 - |

Connection diagram for pipe connection or fitting of a directional control valve bank e.g. BVZP1 F 23 - G 52/22 - H 14 N 15/0 - 1 - 1 - G 24

Connection blocks

Type A
e.g. AS1F2/300-G24

Type B
e.g. B31/450-EM11V-13-G24

Type C
e.g. C5

Type SKC, SWC
e.g. SWC1/150-L-1-G24

Directly mounted valve bank

Connection diagram for pipe connection or fitting of a directional control valve bank e.g. BVZP1 F 23 - G 52/22 - H 14 N 15/0 - 1 - 1 - G 24

www.hawe.de | 03-2015-4.0
Compact hydraulic power packs

1.2 Compact hydraulic power pack type NPC

Compact hydraulic power packs are a type of hydraulic power pack. They are characterised by a highly compact design, since the motor shaft of the electric motor also acts as the pump shaft.

The ready-for-connection compact hydraulic power pack type NPC is suitable for hydraulic systems with operating mode S2. Type NPC includes a DC motor. The power pack is available in a horizontal or vertical version. Either single-circuit systems or dual-circuit systems can be selected. A radial piston pump or an external gear pump can be used as a hydraulic pump.

The compact hydraulic power pack type NPC is suitable for use as a highly compact control system, since the pressure-limiting valve is integrated and valve banks can be directly mounted.

Features and benefits:
- Very low space requirements and easy to transport
- Supplied with direct current at 12V DC or 24V DC
- Particularly suited to mobile applications and construction site operation
- Long lifetime and excellent reliability achieved by using radial piston pumps
- Environmentally sound thanks to low oil fill volumes and minimum cost of disposal
- Low costs for hydraulic fluid
- Co-ordinated range of valves and accessories from the modular system

Intended applications:
- Riveting
- Brakes for wind power plants
- Hydraulic jigs
- Crimping
- Embossing

Design and order coding example

<table>
<thead>
<tr>
<th>NPC 11</th>
<th>/ 0,87</th>
<th>- 1/170</th>
<th>- R</th>
<th>- G12</th>
<th>BWN 1 - NN - 35 - 1 - G12</th>
</tr>
</thead>
</table>

- **Valve assembly:** BWN1, BWH1, VB01
- Can be directly assembled without connection blocks acc. to D 7470 B/1, D 7302

- **Motor voltage:** 12V DC or 24V DC
- **Check valve:** With/without check valve
- **Pressure limiting valve and setting:**
 - 1 = Fixed
 - 2 = Manually adjustable

Delivery flow [lpm]

Basic type, size: Type NPC, size 11 and 12

Nomenclature:
- Radial piston pump with integrated electric motor (DC)

Design:
- Oil immersed compact hydraulic power pack for short period operation

- **p_{max}:** 750 bar
- **Q_{max}:** approx. 1.36 lpm ($V_g = 0.09 - 0.76 \text{ cm}^3/\text{rev}$)
Function

Symbol: NPC 11 / 0.87 - 1/170 - R - G 12

Example circuitry:
NPC, pump delivery flow approx. 0.87 lpm

BWN 1 - NN - 35 - 1 - G 12

Directly mounted valve bank type BWN with two valve sections and pressure switch for gallery P, solenoid voltage 12V DC

General parameters and dimensions

<table>
<thead>
<tr>
<th>NPC 11 (24 V)</th>
<th>NPC 11 (12 V)</th>
<th>NPC 12 (24 V)</th>
<th>NPC 12 (12 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery flow</td>
<td>Max. pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qpu [lpm]</td>
<td>pmax [bar]</td>
<td>Pu [kW]</td>
<td>m [kg]</td>
</tr>
<tr>
<td>0.2</td>
<td>0.31</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.31</td>
<td>0.44</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>0.4</td>
<td>0.65</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>0.6</td>
<td>0.94</td>
<td>1.28</td>
<td>1.28</td>
</tr>
<tr>
<td>0.4</td>
<td>1.05</td>
<td>1.71</td>
<td>1.71</td>
</tr>
<tr>
<td>0.6</td>
<td>1.28</td>
<td>2.14</td>
<td>2.14</td>
</tr>
<tr>
<td>0.87</td>
<td>1.05</td>
<td>2.14</td>
<td>2.14</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Direct current compact hydraulic power pack type NPC: D 7940
- Directly mountable valve banks:
 - Type VB: Page 130
 - Type BWH, BWN: Page 136
 - Pressure switches type DG: Page 270
 - Electronic pressure transducer type DT: D 5440 T/1, D 5440 T/2
Compact hydraulic power packs

1.2 Compact hydraulic power pack type HC and HCW

Compact hydraulic power packs are a type of hydraulic power pack. They are characterised by a highly compact design, since the motor shaft of the electric motor also acts as the pump shaft.

The ready-for-connection compact hydraulic power pack type HC and HCW includes an electric motor which runs in oil. The stator is securely attached to the housing (tank). The compact hydraulic power pack is suitable for hydraulic systems with operating mode S2 or S3. The heat is dissipated via surface convection so that no external cooler is usually necessary.

Either single-circuit systems or dual-circuit systems can be selected. A radial piston pump or external gear pump can be used as a hydraulic pump.

The compact hydraulic power pack type HC and HCW is suitable as a highly compact control system, since connection blocks and valve banks can be directly mounted.

Features and benefits:
- Long lifetime and excellent reliability achieved by using radial piston pumps
- Low oil fill volumes make it environmentally sound thanks to small amount of oil to be disposed of and low costs for hydraulic fluid
- Co-ordinated range of valves and accessories from modular system
- Suitable for vertical and horizontal installation

Intended applications:
- Clamping systems on machine tools and jigs
- Rivets and clinching equipment
- Welding robots
- Lubrication systems

Nomenclature:
- Radial piston pump with integrated electric motor (3-phase or 1-phase version)

Design:
- Oil immersed hydraulic power pack for intermittent service (S3-service)

Pmax:
- Radial piston pump 700 bar
- Gear pump 180 bar

Qmax:
- Radial piston pump approx. 4.4 lpm ($V_g = 1.6 \text{ cm}^3/\text{rev}$)
- Gear pump approx. 3.4 lpm ($V_g = 1.3 \text{ cm}^3/\text{rev}$)

Vusable max:
- 8 l

Design and order coding example

| HC24 | /0,6 - A1/400 - BWH1F-HH-1-1-G24 - 400V 50 Hz |

Motor voltage
- 3 ~ 400V 50 Hz, 3 ~ 460V 60 Hz
- 1 ~ 230V 50 Hz, 1 ~ 110V 60 Hz (3~phase motor)

Optional directly mounted directional valve bank

Connection block

Pump version
- Single circuit pump
 - Radial piston pump H (3-, 5- or 6-cylinders) or gear pump Z
- Dual circuit pump
 - Combinations:
 - Radial piston pump - gear pump
 - Radial piston pump - radial piston pump

Basic type, size
- Type HC (3-phase motor) and type HCW (single-phase-motor, power reduction of 30 ... 50% depending on size), size 1 to 2, type HCG (direct current motor), size 1
 - Horizontal version with low profile (type HC..L) or vertical version
 - Usable volume $V_{usable} 0.5 \text{ l to } 1.1 \text{ l}$
 - With/without fluid level gauge
 - With DC-motor (Type HCG) for short time operation
Function

Example circuit:

HC 24/0.64 - A1/400
Hydraulic power pack type HC, size 24, pump delivery flow approx. 0.64 lpm
Connection block type A and pressure-limiting valve (400 bar)

- BWH1F - RH1 - 1 - 1 - G 24
Directly mounted valve bank type BWH1
General parameters and dimensions

Radial piston pump (3 cyl.)

<table>
<thead>
<tr>
<th>Model</th>
<th>Max. pressure [bar]</th>
<th>Delivery flow [lpm] 50 Hz</th>
<th>Delivery flow [lpm] 60 Hz</th>
<th>Dimensions [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC 14</td>
<td>700 - 160</td>
<td>0.2 - 1.05</td>
<td>0.2 - 1.2</td>
<td>169 H 83.5</td>
</tr>
<tr>
<td>HC 12</td>
<td>600 - 120</td>
<td>0.4 - 2.15</td>
<td>0.5 - 2.5</td>
<td>169 H 83.5</td>
</tr>
<tr>
<td>HC 24</td>
<td>700 - 185</td>
<td>0.27 - 2.27</td>
<td>0.3 - 2.7</td>
<td>169 H 83.5</td>
</tr>
<tr>
<td>HC 22</td>
<td>700 - 140</td>
<td>0.52 - 4.41</td>
<td>0.6 - 5.3</td>
<td>169 H 83.5</td>
</tr>
</tbody>
</table>

Gear pump

<table>
<thead>
<tr>
<th>Model</th>
<th>Max. pressure [bar]</th>
<th>Delivery flow [lpm] 50 Hz</th>
<th>Delivery flow [lpm] 60 Hz</th>
<th>Dimensions [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>169 H 83.5</td>
</tr>
</tbody>
</table>

1) The actual power consumption depends on the respective operation pressure and can be up to 1.5 x P_n
2) Without oil filling

www.hawe.de | 2016
Example circuit:

HC 24/0.64 - A2/400
 - BWH 1 F 1-DH3 R/230-33-G24
 - 3x400V 50Hz

Associatedtechnical data sheets:
- Compact hydraulic power pack type HC and HCW: D 7900
- Compact hydraulic power pack type HCG: D 7900 G

Connection blocks:
- Types A, B and C: Page 68

Directly mountable valve banks:
- Type SWR, SWS: Page 92
- Type BA: Page 70
- Type BVH: Page 76

1 Compact hydraulic power pack
2 Connection block
3 Adapter plate
4 Valve section
5 End plate
Compact hydraulic power packs are a type of hydraulic power pack. They are characterised by a highly compact design, since the motor shaft of the electric motor also acts as the pump shaft.

The ready-for-connection compact hydraulic power pack type KA and KAW includes an electric motor which runs in oil. The stator is securely attached to the housing (tank). The compact hydraulic power pack is suitable for hydraulic systems with operating mode S2, S3 or S6. The heat is dissipated via surface convection so that no external cooler is usually necessary.

For systems with high loads, an external fan that enables additional heat dissipation can be optionally mounted on the housing. The fan is powered by a separate motor independently of the pump motor. Type KA includes a 3-phase motor, while type KAW includes a single-phase-motor. The compact hydraulic power pack type KA and KAW is available in horizontal and vertical versions. Modules can be added to the tank so that different usable oil volumes are possible. Either single-circuit systems or dual-circuit systems can be selected. A radial piston pump or external gear pump can be used as a hydraulic pump.

The compact hydraulic power pack type KA and KAW is suitable as a highly compact control system, since connection blocks and valve banks can be directly mounted.

Features and benefits:
- Additional separately driven fan for maximum utilisation of power
- Fill/usable volumes can be flexibly extended by modular tank extensions
- Long lifetime and excellent reliability achieved by using radial piston pumps
- Low oil fill volumes make it environmentally sound thanks to small cost of disposal and low costs for hydraulic fluid
- Co-ordinated range of valves and accessories from modular system
- Suitable for vertical and horizontal installation
- Optimum efficiency thanks to suboil motor cooling, direct transmission of force and cleverly designed heat dissipation

Intended applications:
- Brake and rotor adjustment modules on wind turbines
- Clamping systems on machine tools and appliances
- Torque wrenches
- Rivets and clinching equipment
- Presses
- Handling systems

Nomenclature:
- Radial piston or gear pump with integrated motor
- Single or dual circuit pump

Design:
- Oil immersed hydraulic power pack for intermittent or load/no load operation (S3-service)

P_{max}:
- Radial piston pump 700 bar
- Gear pump 180 bar

Q_{max}:
- Radial piston pump approx. 7 lpm ($V_g = 2.29 \text{ cm}^3/\text{rev}$)
- Gear pump approx. 24.1 lpm ($V_g = 7.9 \text{ cm}^3/\text{rev}$)

V_{tank max}:
- 2 ... 10 l
Design and order coding example

<table>
<thead>
<tr>
<th>KA28</th>
<th>22</th>
<th>L1</th>
<th>KFTP/HZ0,59/8.8</th>
<th>-</th>
<th>- 3x400V</th>
<th>- G1/2x300</th>
</tr>
</thead>
</table>

Oil drain hose

Motor voltage: 3 ~ 400V 50 Hz, 3 ~ 460V 60 Hz, 3 ~ 690V 50 Hz, 1 ~ 230V 50 Hz, 1 ~ 110V 60 Hz (1-phase motor)

Valve design

Pump version

- Single circuit pump
 - Radial piston pump H or gear pump Z

- Dual circuit pump
 - with joint connection pedestal for pressure connections P1 and P3
 - Combinations: Radial piston pump - radial piston pump (HH) and radial piston pump - gear pump (HZ)

Additional function

- Oil sight glass
- Level gauge with level switch
- Temperature switch
- Silica gel filter (instead of breather filter)
- Additional fans
- Various electrical connection variants (type KA...S)

Installation position

Horizontal version with low installation heights (type KA..L) or vertical version (type KA..S)

Tank size [l]

Basic type, size: Type KA (3-phase motor) and KAW (1-phase motor, power reduction 30 ~ 50% dep. on size), size 2 and 4

Function

KA 231 LKP/H 0.59 - AX 34 D101VE1B/400 - BA 2

- NBVP 16 G/R/AB 2.0 - M/0
- NBVP 16 Y/ABR 1.5/4 - M/0
- 1 - 6 24
General parameters and dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>3-cylinder radial piston pump</th>
<th>6-cylinder radial piston pump</th>
<th>Gear pump</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p_{max} [bar]</td>
<td>Q_{max} [lpm] 50 Hz</td>
<td>Q_{max} [lpm] 60 Hz</td>
</tr>
<tr>
<td>KA 21</td>
<td>700 - 45</td>
<td>0,63 - 10,02</td>
<td>0,76 - 12,05</td>
</tr>
<tr>
<td>KA 22</td>
<td>700 - 140</td>
<td>0,63 - 0,02</td>
<td>0,76 - 12,05</td>
</tr>
<tr>
<td>KA 23</td>
<td>700 - 60</td>
<td>0,31 - 4,89</td>
<td>0,37 - 5,93</td>
</tr>
<tr>
<td>KA 24</td>
<td>700 - 160</td>
<td>0,31 - 4,89</td>
<td>0,37 - 5,93</td>
</tr>
<tr>
<td>KA 26</td>
<td>700 - 160</td>
<td>0,63 - 10,02</td>
<td>0,76 - 12,05</td>
</tr>
<tr>
<td>KA 28</td>
<td>700 - 185</td>
<td>0,31 - 4,89</td>
<td>0,37 - 5,93</td>
</tr>
</tbody>
</table>

Table continued

<table>
<thead>
<tr>
<th>Type</th>
<th>3-cylinder radial piston pump</th>
<th>6-cylinder radial piston pump</th>
<th>Gear pump</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p_{max} [bar]</td>
<td>Q_{max} [lpm] 50 Hz</td>
<td>Q_{max} [lpm] 60 Hz</td>
</tr>
<tr>
<td>KA 42</td>
<td>700 - 220</td>
<td>0,84 - 11,8</td>
<td>2,0 - 14,4</td>
</tr>
<tr>
<td>KA 44</td>
<td>700 - 220</td>
<td>1,6 - 5,98</td>
<td>1,01 - 7,25</td>
</tr>
</tbody>
</table>

Diagrams

1. 3-cylinder radial piston pump
2. 6-cylinder radial piston pump
3. Gear pump
Example circuit:

KA 281 S16K/H3.61-FSHS-24VDC -A 14/230
-BVH 11 W/CZ52/117GM/B3,5H
-82 - AC1002/130/3A
-XM 24
3x400V 50Hz

Associated technical data sheets:
- Compact hydraulic power packs type KA:
 D 8010, D 8010-4

Similar products:
- Type HC, HCG: Page 46

Suitable connection blocks:
- Types A, B and C: Page 68

Directly mountable valve banks:
- Type VB: Page 130
- Type BWH, BWN: Page 136
- Type SWR, SWS: Page 92
- Type BA: Page 70
- Type BVH: Page 76
Compact hydraulic power packs

1.2 Compact hydraulic power pack type MP and MPN

Compact hydraulic power packs are a type of hydraulic power pack. They are characterised by a highly compact design, since the motor shaft of the electric motor also acts as the pump shaft.

The ready-for-connection compact hydraulic power pack type MP, MPW, MPN and MPNW includes an electric motor which runs in oil. The stator is securely attached to the housing (tank). The compact hydraulic power pack is suitable for hydraulic systems with operating mode S2, S3 or S6. The heat is dissipated via surface convection so that no external cooler is usually necessary. Type MP and MPN includes a 3-phase motor, while type MPW and MPNW includes a single-phase-motor. Different tank sizes enable different usable oil quantities. Either single-circuit systems or dual-circuit systems can be selected. A radial piston pump, external gear pump or internal gear pump can be used as a hydraulic pump.

The compact hydraulic power pack type MP, MPW, MPN and MPNW is suitable as a highly compact control system, since connection blocks and valve banks can be directly mounted.

Features and benefits:
- Intermittent or load/no load operation (S2-/S3-/S6-service)
- Long lifetime and excellent reliability achieved by using radial piston pumps
- Low oil fill volumes make it environmentally sound thanks to small cost of disposal and low costs for hydraulic fluid
- Two-stage valves and switch units for press control systems can be directly flange mounted
- Co-ordinated range of valves and accessories from modular system
- Dual-circuit pumps available

Intended applications:
- Brake and rotor adjustment modules on wind turbines
- Counterbalance as well as machine tools
- Presses and other shaping machines
- Handling and clamping systems on machine tools and fixtures
- Lubrication systems

<table>
<thead>
<tr>
<th>Nomenclature:</th>
<th>Radial piston and/or gear pump with integrated motor single or dual circuit pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design:</td>
<td>Oil immersed hydraulic power pack for intermittent or load/no load operation (S2-/S3-/S6-service)</td>
</tr>
<tr>
<td>p_{max}:</td>
<td>Radial piston pump 700 bar (high pressure) Gear pump 220 bar (low pressure)</td>
</tr>
<tr>
<td>Q_{max}:</td>
<td>13.1 lpm (high pressure) ($V_g = 10.7 \text{ cm}^3/\text{rev}$) 83 lpm (low pressure) ($V_g = 61 \text{ cm}^3/\text{rev}$)</td>
</tr>
<tr>
<td>$V_{\text{t max}}$:</td>
<td>approx. 100 lpm</td>
</tr>
</tbody>
</table>
Design and order coding example

MPN 44 - H 1,5 - B10.20 D - ... - 3 ~ 230V 50 Hz

Motor voltage 3 ~ 230/400V Δy 50 Hz, 3 ~ 500V γ 50 Hz,
1 ~ 230V 50 Hz, 1 ~ 110V 60 Hz (single-phase-motor)

Valve mounting

Additional options
- Level gauge
- Level switch
- Temperature switch
- Various means of electrical connection

Design
- For installation in self-made oil tanks: as single pump or cover plate version
- With tank, usable volume V_{usale} 10 l to 75 l

Pump version

Single-circuit pump
- Radial piston pump H or gear pump Z
- Internal gear pump IZ

Dual-circuit pump
- Combinations:
 - Radial piston pump - radial piston pump (HH, only MPN)
 - Radial piston pump - gear pump (HZ)

Basic type, size
- Type MP (3-phase motor) and MPW (single-phase-motor), sizes 1 and 2
- Type MPN (3-phase motor) and MPNW (single-phase-motor), size 4
- Single-phase-motor, power reduction by 30 ... 50% depending on size

Function

Single stage pump
(radial piston pump, gear pump)

Dual stage pump
(radial piston/gear pump, gear pump/gear pump)

Installation pump

Hydraulic power pack (incl. tank)

Example circuit:
General parameters and dimensions

Single-circuit pump, dual-circuit pump (without tank)

Compact hydraulic power pack (tank with mounted valves)

Radial piston pump (3 cyl.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MP 14</td>
<td>700 - 220</td>
<td>0,27 - 1,07</td>
<td>150 - 15</td>
<td>0,5 - 6,9</td>
<td>183/228 249 124</td>
</tr>
<tr>
<td>MP 12</td>
<td>700 - 250</td>
<td>0,53 - 2,1</td>
<td>150 - 60</td>
<td>2 - 6,9</td>
<td>195/291 322,5 140</td>
</tr>
<tr>
<td>MP 24</td>
<td>700 - 310</td>
<td>0,46 - 1,73</td>
<td>150 - 35</td>
<td>2 - 12,3</td>
<td>251/258 431</td>
</tr>
<tr>
<td>MP 22</td>
<td>700 - 260</td>
<td>0,88 - 3,51</td>
<td>150 - 18</td>
<td>4 - 41,4</td>
<td>274/281 454</td>
</tr>
<tr>
<td>MPN 42</td>
<td>700 - 250</td>
<td>2,39 - 7,33</td>
<td>200 - 60</td>
<td>8,46 - 30,02</td>
<td>298/313 486</td>
</tr>
<tr>
<td>MPN 44</td>
<td>700 - 250</td>
<td>1,53 - 5,37</td>
<td>200 - 55</td>
<td>5,37 - 25,99</td>
<td></td>
</tr>
<tr>
<td>MPN 46</td>
<td>700 - 250</td>
<td>3,16 - 11,12</td>
<td>200 - 40</td>
<td>12,41 - 71,73</td>
<td></td>
</tr>
<tr>
<td>MPN 48</td>
<td>700 - 330</td>
<td>2,36 - 4,06</td>
<td>220 - 60</td>
<td>4,16 - 34,91</td>
<td></td>
</tr>
<tr>
<td>MPN 404</td>
<td>700 - 340</td>
<td>3,1 - 3,49</td>
<td>220 - 45</td>
<td>2,7 - 68,16</td>
<td></td>
</tr>
</tbody>
</table>

1) The actual power consumption is dependent on the respective operation pressure and can be up to 1.5xP\(_N\).
2) Values apply to radial piston pump/gear pump versions

Gear pump

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MP 14</td>
<td>700 - 220</td>
<td>0,27 - 1,07</td>
<td>150 - 15</td>
<td>0,5 - 6,9</td>
<td>183/228 249 124</td>
</tr>
<tr>
<td>MP 12</td>
<td>700 - 250</td>
<td>0,53 - 2,1</td>
<td>150 - 60</td>
<td>2 - 6,9</td>
<td>195/291 322,5 140</td>
</tr>
<tr>
<td>MP 24</td>
<td>700 - 310</td>
<td>0,46 - 1,73</td>
<td>150 - 35</td>
<td>2 - 12,3</td>
<td>251/258 431</td>
</tr>
<tr>
<td>MP 22</td>
<td>700 - 260</td>
<td>0,88 - 3,51</td>
<td>150 - 18</td>
<td>4 - 41,4</td>
<td>274/281 454</td>
</tr>
<tr>
<td>MPN 42</td>
<td>700 - 250</td>
<td>2,39 - 7,33</td>
<td>200 - 60</td>
<td>8,46 - 30,02</td>
<td>298/313 486</td>
</tr>
<tr>
<td>MPN 44</td>
<td>700 - 250</td>
<td>1,53 - 5,37</td>
<td>200 - 55</td>
<td>5,37 - 25,99</td>
<td></td>
</tr>
<tr>
<td>MPN 46</td>
<td>700 - 250</td>
<td>3,16 - 11,12</td>
<td>200 - 40</td>
<td>12,41 - 71,73</td>
<td></td>
</tr>
<tr>
<td>MPN 48</td>
<td>700 - 330</td>
<td>2,36 - 4,06</td>
<td>220 - 60</td>
<td>4,16 - 34,91</td>
<td></td>
</tr>
<tr>
<td>MPN 404</td>
<td>700 - 340</td>
<td>3,1 - 3,49</td>
<td>220 - 45</td>
<td>2,7 - 68,16</td>
<td></td>
</tr>
</tbody>
</table>

Version with tank:

<table>
<thead>
<tr>
<th>Size</th>
<th>Tank size</th>
<th>H [mm]</th>
<th>W [mm]</th>
<th>D [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP 1</td>
<td>B 3</td>
<td>225</td>
<td>216</td>
<td>136</td>
</tr>
<tr>
<td>MP 1, MP 2</td>
<td>B 5</td>
<td>265</td>
<td>258</td>
<td>160</td>
</tr>
<tr>
<td>MP 2, MPN 4</td>
<td>B 10</td>
<td>358</td>
<td>324</td>
<td>200</td>
</tr>
<tr>
<td>MPN 4</td>
<td>B 25</td>
<td>458</td>
<td>402</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>B 55</td>
<td>470</td>
<td>560</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>B 110</td>
<td>495</td>
<td>560</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>B 25 L</td>
<td>283</td>
<td>623</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>B 55 L</td>
<td>305</td>
<td>560</td>
<td>350</td>
</tr>
</tbody>
</table>
Example circuit:

MPN 44-Z 8.8-B 10 KT
-AS 1 F 3/160
-BA 2
-NBVP 16 G/R-GM/NZP 16 LZY 5/50-G 8 MA/GM/3-X 84 V-DG 5E-250-1/4
-NBVP 16 G-GM/NZP 16 LZY 5/50-G 8 MA/GM/3-X 84 V-DG 62
-1-G 24
-X 84 V-9/250
-3 x 400/230 V 50 Hz

Associated technical data sheets:
- Compact hydraulic power packs type MP, MPW: D 7200, D 7200 H
- Compact hydraulic power pack type MPN and MPNW: D 7207
- Type SWR, SWS: Page 92
- Type BA: Page 70
- Type BVH: Page 76

Connection blocks:
- Types A, B and C: Page 68

Directly mountable valve banks:
- Type VB: Page 130
- Type BWH, BWN: Page 136
Compact hydraulic power packs are a type of hydraulic power pack. They are characterised by a highly compact design, since the motor shaft of the electric motor also acts as the pump shaft.

The ready-for-connection compact hydraulic power pack type HK, HKF, HKL and HKLW includes an electric motor which runs in oil. The stator is securely attached to the housing (tank). The compact hydraulic power pack is suitable for hydraulic systems with operating mode S2, S3 or S6. A fan, which effectively dissipates the heat from the hydraulic system, is mounted on the housing. In the case of type HKF, the fan is powered by a separate motor independently of the pump motor. For type HK, HKL and HKLW, the fan is securely attached to the motor shaft. An external cooler is not generally required. Type HK, HKF and HK includes a 3-phase motor, while type HKLW includes a single-phase-motor. The compact hydraulic power pack type HK and HKF has a vertical housing, while type HKL and HKLW has a horizontal housing. Single-circuit, dual-circuit or triple-circuit systems can be selected. A radial piston pump, an external gear pump or an internal gear pump can be used as a hydraulic pump.

The compact hydraulic power pack type HK, HKF, HKL and HKLW is suitable as a highly compact control system, since connection blocks and valve banks can be directly mounted.

Features and benefits:
- Suited for permanent and intermittent operation (S1/S6 service)
- Additional separately driven fan for maximum utilisation of power
- 3 sizes enable wide field of application
- Radial piston pumps ensure long lifetime and high reliability
- Small filling volume minimize costs for fluid and fluid disposal
- Matching valve and accessories from a modular system
- Available as single to triple circuit pump

Intended applications:
- Clamping systems on machine tools and turning centres
- Welding machines, roboter
- Endurance test benches
- Endurance test bench construction
- Torque wrench

Nomenclature:
- Radial piston pump and/or gear pump with integrated motor (version for 3-phase mains)

Design:
- Oil immersed compact hydraulic power pack for permanent and intermittent operation (S1/S6 service)
- \(p_{\text{max}} \): 700 bar (radial piston pump) 180 bar (gear pump)
- \(Q_{\text{max}} \): Radial piston pump (high pressure) approx. 13 lpm \((V_g = 9.15 \, \text{cm}^3/\text{rev}) \) Gear pump (low pressure) 24 lpm \((V_g = 17.0 \, \text{cm}^3/\text{rev}) \)
- \(V_{\text{usable max}} \): approx. 11.1 l
Design and order coding example

<table>
<thead>
<tr>
<th>HK 34</th>
<th>8</th>
<th>LST</th>
<th>- H 3,6</th>
<th>3 x 400V 50Hz</th>
</tr>
</thead>
</table>

Motor voltage
3 ~ 230/400V Δy 50 Hz, 3 ~ 265/460V Δy 60 Hz
1 ~ 230V 50 Hz, 1 ~ 115V 60 Hz (1~phase motor)

Pump version
Single circuit pump
- Radial piston pump H, gear pump Z, internal gear pump IZ

Dual circuit pump with joint connection pedestal for pressure ports P1 and P3
- Combinations:
 - Radial piston pump - radial piston pump (HH)
 - Radial piston pump - gear pump (HZ)

Dual circuit pump with separate connection pedestals
- Radial piston pump H or gear pump Z

Additional functions
- Temperature and level switch, single or double version
- Additional leakage port (Type HK 4.L)

Tank size
Type HK: Usable volume V_{usable} 0.85 l to 15.4 l
Type HKL: Usable volume V_{usable} 1.7 l to 9.1 l
- Various filler neck designs

Basic type, size
Type HK, size 2 to 4, type HKF (with auxiliary blower for increased cooling), size 4
Type HKL (3~phase motor) and HKLW (1~phase motor), size 3

Additional versions:
- With molded motor
- With frequency-controlled drive

Function

Single stage pump
(radial piston pump, or gear pump)

Dual stage pump
(radial piston/piston pump, or
gear pump/gear pump, or radial piston pump/gear pump)

Joint pump pedestal
Separate pump pedestals

Triple-circuit pump
(only radial piston pump)

Separate pump pedestals
General parameters and dimensions

HK..

![Diagram of HK type](image)

- **Terminal box**: (only with type HK 4.)
- **Pump pedestal 2**
- **Pump pedestal 1**

HKL..

![Diagram of HKL type](image)

Radial piston pump

<table>
<thead>
<tr>
<th>Max. pressure</th>
<th>Delivery flow</th>
<th>Max. pressure</th>
<th>Delivery flow</th>
<th>Dimensions [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p_{max} [bar]</td>
<td>Q_{pu} [lpm]</td>
<td>Q_{pu} [lpm]</td>
<td>P_{N} [kW]</td>
</tr>
<tr>
<td>HK 24</td>
<td>700 - 220</td>
<td>0.46 - 1.77</td>
<td>0.55 - 2.12</td>
<td>-</td>
</tr>
<tr>
<td>HK 33</td>
<td>560 - 100</td>
<td>1.25 - 6.5</td>
<td>1.5 - 7.8</td>
<td>170 - 100</td>
</tr>
<tr>
<td>HK 34</td>
<td>700 - 170</td>
<td>1.25 - 6.5</td>
<td>1.5 - 7.8</td>
<td>170 - 160</td>
</tr>
<tr>
<td>HK(F) 43</td>
<td>610 - 90</td>
<td>2.08 - 13.1</td>
<td>3.36 - 15.72</td>
<td>170 - 80</td>
</tr>
<tr>
<td>HK(F) 44</td>
<td>700 - 130</td>
<td>2.08 - 13.1</td>
<td>2.5 - 15.72</td>
<td>170 - 110</td>
</tr>
<tr>
<td>HK(F) 48</td>
<td>700 - 130</td>
<td>2.08 - 13.1</td>
<td>2.5 - 15.72</td>
<td>170 - 110</td>
</tr>
<tr>
<td>HKL(W) 32</td>
<td>700 - 220</td>
<td>1.65 - 8.7</td>
<td>1.98 - 10.44</td>
<td>170 - 130</td>
</tr>
<tr>
<td>HKL(W) 34</td>
<td>700 - 220</td>
<td>1.65 - 8.7</td>
<td>1.98 - 10.44</td>
<td>170 - 130</td>
</tr>
</tbody>
</table>

1) The actual power consumption is dependent on the respective operation pressure and can be up to $1.5 \times P_{N}$.
Example circuits:

HKF 489 LD-DTST65/1P11M-Z11.3
Compact hydraulic power pack HKF 489 with drain port (coding L) level switch with two switch points (coding D-D); temperature switch with two switch points (coding T55 T65) with Harting plugs coding P1 and oil filler (coding P11).

![Diagram of HKF 489 LD-DTST65/1P11M-Z11.3](image)

HK44 /1-H 2.5-Z 6.9-AS1/400-AS1/110-G24
Compact hydraulic power pack type HK 44 with radial piston pump H 2.5 and gear pump Z 6.9 on separate pump pedestals, each with connection block (type AS1/..) with pressure-limiting valve (400 bar and 110 bar) and idle circulation valve (connection of valve banks possible)

![Diagram of HK44 /1-H 2.5-Z 6.9-AS1/400-AS1/110-G24](image)

Associated technical data sheets:
- Compact hydraulic power pack type HK 4: D 7600-4
- Compact hydraulic power pack type HK 3: D 7600-3
- Compact hydraulic power pack type HK 2: D 7600-2
- Compact hydraulic power pack type HKL and HKLW: D 7600-3L

Connection blocks:
- Types A, B and C: Page 68

Directly mountable valve banks:
- Type VB: Page 130
- Type BWH, BWN: Page 136
- Type SWR, SWS: Page 92
- Type BA: Page 70
- Type BVH: Page 76
1.2 Radial piston pump type R, RG and RZ

Radial piston pumps are a type of hydraulic pump. They consist of valve-controlled pump cylinders that are arranged radially. The radial piston pump type R, RG and RZ has a closed pump housing. Therefore, besides use as a motor pump outside an oil tank, installation in the container of a hydraulic power pack is also possible. The radial piston pump is available with several pressure outlets which enable the same or several different flows. Type RZ is a classic dual-stage pump consisting of a radial piston pump and a gear pump. The radial piston pump type RG has plain bearings which have a longer storage life. This type is therefore used in extreme operating conditions. Extremely high volumetric flows can be achieved by arranging up to 6 radials in parallel. When the radial piston pump is used in the hydraulic power pack, it is suitable for use as a highly compact control system. Connection blocks and valve banks can be mounted on the cover plate of the hydraulic power packs.

Features and benefits:
- High level of efficiency
- Compact design
- Max. 14 separate pressure outlets
- Available from the modular product range as a hydraulic power pack with valve banks

Intended applications:
- Press construction
- Jig construction
- Testing and laboratory devices
- Lubricating systems

Design and order coding example

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor pump</td>
<td>With/without industrial standard motor (output (P_n) in kW)</td>
</tr>
<tr>
<td>Hydraulic power packs</td>
<td>Tank version, with/without standard motor</td>
</tr>
<tr>
<td></td>
<td>Cover plate version (for installation on customer furnished tanks), with/without industrial standard motor</td>
</tr>
<tr>
<td>Basic type, delivery flow [lpm]</td>
<td>Type R (version with roller bearing)</td>
</tr>
<tr>
<td></td>
<td>Type RG (version with plain bearing)</td>
</tr>
<tr>
<td></td>
<td>Type RZ (dual-stage pump)</td>
</tr>
</tbody>
</table>

Additional versions:
- With several pressure ports

Nomenclature:
- **Radial piston pump**
- **Motor pump**
- **Hydraulic power pack**

Design:
- **P_{\text{max}}**: 700 bar
- **Q_{\text{max}}**: 91.2 lpm (\(V_g = 64.18 \text{ cm}^3/\text{rev} \))
- **V_{\text{tank max}}**: approx. 470 l

Options:
- Fluid level gauge, level switch
- Temperature switch

Function, drive:
- **With/without industrial standard motor (output \(P_n \) in kW)**
- **Tank version, with/without standard motor**
- **Cover plate version (for installation on customer furnished tanks), with/without industrial standard motor**

Basic type, delivery flow [lpm]:
- **Type R** (version with roller bearing)
- **Type RG** (version with plain bearing)
- **Type RZ** (dual-stage pump)

Additional versions:
- With several pressure ports
Function

Motor pump type R and RG

Hydraulic power pack type R and RG

Motor pump type RZ

Hydraulic power pack type RZ

General parameters and dimensions

Motor pump type R and RG

Hydraulic power pack type R, RG and RZ

Connection block with Pressure-limiting valve

For dimensions of motor pumps and hydraulic power packs, see Page 62
Hydraulic power pack:

<table>
<thead>
<tr>
<th>Tank size</th>
<th>H [mm]</th>
<th>B [mm]</th>
<th>T [mm]</th>
<th>V_{max} \text{ tank} [l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 6</td>
<td>230</td>
<td>253</td>
<td>315</td>
<td>9.3</td>
</tr>
<tr>
<td>B 13</td>
<td>230</td>
<td>368</td>
<td>260</td>
<td>17</td>
</tr>
<tr>
<td>B 20</td>
<td>320</td>
<td>368</td>
<td>260</td>
<td>25</td>
</tr>
<tr>
<td>B 30</td>
<td>320</td>
<td>448</td>
<td>320</td>
<td>39</td>
</tr>
<tr>
<td>B 40</td>
<td>320</td>
<td>448</td>
<td>440</td>
<td>55</td>
</tr>
<tr>
<td>B 50</td>
<td>403</td>
<td>600</td>
<td>420</td>
<td>85</td>
</tr>
<tr>
<td>B 75</td>
<td>478</td>
<td>600</td>
<td>420</td>
<td>107</td>
</tr>
<tr>
<td>B 100</td>
<td>536</td>
<td>650</td>
<td>500</td>
<td>152</td>
</tr>
<tr>
<td>B 160</td>
<td>666</td>
<td>650</td>
<td>500</td>
<td>193</td>
</tr>
<tr>
<td>B 250</td>
<td>575</td>
<td>1000</td>
<td>600</td>
<td>309</td>
</tr>
<tr>
<td>B 400</td>
<td>825</td>
<td>1000</td>
<td>600</td>
<td>469</td>
</tr>
</tbody>
</table>

Circuit example 1:

R 4,0/B 50 A 700 - VB 11 DM - HRHR - 1 - G 24 - V 5,5
Circuit example 2:
RZ 6.0/2-24/B50-V3 - CR4M-280/30

Circuit example 3:
RZ 1.4/2-16/B100-V3 - NE21-700/55 - VB 21 GM - FNN - 2 - G24

Associated technical data sheets:
- Radial piston pump type R and RG: D 6010
- Motor pump and hydraulic power pack type R and RG: D 6010 H
- Radial piston pumps with several pressure connections type R, RG: D 6010 D, D 6010 DB
- Radial piston pump type R and RG with one main pressure connection and one or two ancillary pressure connections: D 6010 S

Directly mountable valve banks:
- Type VB: Page 130
- Type BWH(N): Page 136
- Type SWR: Page 92
Air-driven hydraulic pumps are pneumatically driven, reciprocally acting plunger pumps. They operate as pneumatic pressure boosters with oscillating movement and automatic stroke reversal control.

The air-driven hydraulic pump type LP can generate up to 1500 bar. It is available as a single pump or as a hydraulic power pack with different tank sizes and valve banks. The delivery flow is dependent on the air pressure set and the flow resistance currently present. It can decay to standstill.

Applications are in laboratory presses, fixture design, in lubrication systems or in potentially explosive atmospheres.

Features and benefits:
- High operating pressures
- Suitable for explosion-proof systems and equipment
 - No electrical energy
- Hydraulic power packs with direct valve mounting

Intended applications:
- Construction and construction materials machinery
- Fixture design
- Testing and laboratory equipment

Design and order coding example

<table>
<thead>
<tr>
<th>LP 125 - 16</th>
<th>/B4</th>
<th>VB 11 LP - HHH - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve mounting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Valve bank type VB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Valve bank type BWN and BWH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Hydraulic power pack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Tank version, usable volume V_{usable} 5 l to 28 l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Cover plate version (for installation in self-manufactured oil tanks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic type, size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Type LP, size 80, 125, 160</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Function

![Diagram](image-url)
General parameters and dimensions

<table>
<thead>
<tr>
<th>Basic type and size</th>
<th>B</th>
<th>H</th>
<th>T</th>
<th>h</th>
<th>V_{max} tank (l)</th>
<th>m (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP 80...B4</td>
<td>200</td>
<td>242,5</td>
<td>200</td>
<td>94</td>
<td>7</td>
<td>5,7</td>
</tr>
<tr>
<td>LP 125...B4</td>
<td>200</td>
<td>242,5</td>
<td>200</td>
<td>110</td>
<td>5,8</td>
<td>5,7</td>
</tr>
<tr>
<td>LP 125...B10</td>
<td>324</td>
<td>332,5</td>
<td>200</td>
<td>132</td>
<td>16,6</td>
<td>8,5</td>
</tr>
<tr>
<td>LP 125...B25</td>
<td>402</td>
<td>410</td>
<td>250</td>
<td>130</td>
<td>34</td>
<td>15,1</td>
</tr>
<tr>
<td>LP 160...B10</td>
<td>324</td>
<td>332,5</td>
<td>200</td>
<td>132</td>
<td>13,5</td>
<td>8,5</td>
</tr>
<tr>
<td>LP 160...B25</td>
<td>402</td>
<td>410</td>
<td>250</td>
<td>130</td>
<td>33</td>
<td>15,1</td>
</tr>
</tbody>
</table>

Example circuit:

LP 125-10/B 10 D
- VB 11 LM-NRN-1-G 24

Hydraulic power pack in tank, version with air-driven hydraulic pump type LP125-10, tank size B10 as well as float switch D (normally closed) and valve bank type VB11 attached.

Associated technical data sheets:
- Air-driven hydraulic pump type LP: D 7280
- Hydraulic power pack type LP: D 7280 H

Valve banks:
- Type VB:[Page 130](#)
- Type BWH(N):[Page 136](#)
Mounted valves

1.2 Connection block type A, B and C

A mounted valve represents the connecting link between the hydraulic power pack and the hydraulic control. Mounted valves can be combined with compact hydraulic power packs, for example.

A valve bank can be directly attached to the connection block type A such that a compact hydraulic control unit is produced. As standard the type A contains a pressure-limiting valve that can be supplemented with a pressure or return line filter, or an idle circulation valve, among other items. The connection block type B controls single-acting cylinders, e.g. in pallet lifting equipment. The integrated pressure-limiting valve limits the maximum lifting force. The lowering speed is adjusted using the integrated throttle. The connection block type C has only a pump and return port and is used in hydraulic systems with decentral valve blocks.

The connection blocks type A, B and C can be combined, e.g. with the compact hydraulic power packs type KA, HK and MPN.

Features and benefits:
- Enables compact and sturdy direct mounting of ongoing components at the compact power packs of HAWE Hydraulik
- Intermediate plates enable versatile addition of other components
- Efficient and space saving solution for mounting individual valves or valve banks to single and dual circuit pumps
- Pressure and return line filter, pressure limiting valves, switches etc. can be integrated

Intended applications:
- Lifting devices
- Machine tools
- Modules for braking or rotor blade adjustment at wind power systems
- Tracking systems for solar panels and parabolic antennas

Design and order coding example

AS3F2 /420 - G24

<table>
<thead>
<tr>
<th>Solenoid voltage</th>
<th>12V DC, 24V DC, 230V AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure setting (bar)</td>
<td></td>
</tr>
<tr>
<td>Basic type</td>
<td>Type A, B, C see table</td>
</tr>
</tbody>
</table>

Function

A

B

C
Options, type A, B, C

Type A with pressure-limiting valve (pre-set or manually adjustable, also with unit approval)
- For direct pipe connection
- To attach valve banks

Options:
- Check valve in P gallery
- Prop. pressure-limiting valve
- Return line filter, Pressure filter
- Idle circulation valve (solenoid-actuated)
- Shut-off valve, accumulator charging valve

Type B with pressure-limiting valve to actuate single- and double-acting cylinders
- For direct pipe connection

Options:
- Check valve in P gallery
- Throttle for regulating the drain speed
- Idle circulation valve open or closed in neutral position
- Pressure switch in P gallery
- Automatic clamping and releasing via the pressure switch (type B..DW)

Type C without additional elements
- For direct pipe connection

Options:
- For pipe connection (pump side) of all type A, B connection blocks (Type C15, C16 - connection block with hole pattern of the pump, type C36)

Additional versions
- Connection blocks for dual-stage pumps
- Intermediate blocks for dual-stage pumps type S, V, C30
- Spacer plates for single and dual-circuit pumps type U.
- Additional intermediate block for second pressure stage type V, S

General parameters and dimensions

AS ..
Example: HK 44/1 - H 2.08 - ASX 3 F2/400 - G 24

B..
Example: HC 14/1.95 - B 31/180 - EM 11V - 13/3 - G 24

Associated technical data sheets:
- Connection blocks type A for hydraulic power packs: D 6905 A/1
- Connection block type AX, with unit approval: D 6905 TUV
- Connection blocks type B for hydraulic power packs: D 6905 B
- Connection block type C 5 and C 6: D 6905 C

Suitable compact hydraulic power packs:
- See "Compact hydraulic power packs" section

Products with shared connection pattern:
- Two-stage valves type NE 21: Page 198
- Switch units type CR: Page 154

Suited valve banks for combination:
- Type VB: Page 130
- Type BWH, BWN: Page 136
- Type SWR, SWP, SWS: Page 92
- Type BA: Page 70
- Type BVH: Page 76
Mounted valves

1.2 Valve bank (nominal size 6) type BA

A valve bank combines different valves for operating independent consumers. The directional valve bank type BA consists of several valve sections that are fitted to sub-plates with NG 6. Using these items compact control blocks can be assembled flexibly. The intermediate plates type NZP make possible additional functions and contain, e.g., pressure-reducing valves, shock valves, load-holding valves etc. An intermediate plate can be inserted between the sub-plate and the valve. The valve bank type BA can be flange-mounted directly on the compact hydraulic power pack.

Features and benefits:
- Sub-plates for flexible combination of directional valve types with NG 6 (CETOP) standard connection pattern
- Valve bank can be flange mounted directly on the connection block of a compact hydraulic power pack or connected as a separately arranged valve bank for pipe connection
- Pressure switches and/or any other monitoring elements can be connected directly
- Additional elements, such as orifices, throttles and check valves for connections P, R, A and B can be integrated
- Hydraulic accumulator can be mounted directly

Intended applications:
- Clamping systems on machine tools and equipment
- Process control on deforming machine tools
- Brake and rotor adjustment modules on wind turbines

Nomenclature:
- Sub-plates/directional seated valve, zero leakage

Version:
- Valve section with sub-plates for pipe connection

Actuation:
- Solenoid
 - Pressure-operated
 - Hydraulic
 - Pneumatic
 - Manual
- Mechanical
 - Pin
 - Roller

p_{max}: 500 bar
Q_{max}: 50 lpm
Design and order coding example

<table>
<thead>
<tr>
<th>BA2</th>
<th>A5</th>
<th>NBVP16</th>
<th>NBVP16</th>
<th>NSWP2</th>
<th>S</th>
<th>G</th>
<th>B0,8 R</th>
<th>B0,6 R</th>
<th>/ABR2,0/BBR1,5</th>
<th>/ABR1,0/BBR1,5</th>
<th>/A3B9/400</th>
<th>/S</th>
<th>/0</th>
<th>/0</th>
<th>- 1</th>
<th>- G24</th>
</tr>
</thead>
</table>

Circuit symbol of the directional valve
- **Valve sections**
 - **Directional valves**
 - Type NSMD2, NSWP2, NBVP16, NBMD16, NG...-1, NZP16
 - **Intermediate plates for series connection**
 - Type CZ: with pressure-reducing valve in P gallery
 - **Intermediate plates for parallel connection type NZP**
 - with throttle and/or throttle check valves
 - with pressure-reducing valves
 - with short-circuit and by-pass valves
 - for random switching of a 2nd speed

Connection block
- Direct mounting onto type A, AF etc. connection blocks (for type KA, MP, MPN, HC, HK(F), HKL compact hydraulic power packs)
- Variant for pipe connection with/without pressure-limiting valve (A5)

End plate
- Drain valve with/without pressure switches
- with one or two accumulator ports with/without release valve and/or with/without drain valve

Sub-plate
- Check valves with release
- Throttle
- Additional pressure gauge connections

Additional elements in R
- Return pressure stop

Additional elements in A, B
- Throttle check valve in A and/or B
- Throttle valve in A and/or B

Pressure switch/pressure gauge
- in A and/or B

Additional elements in P
- Check valve
- Orifice

Solenoid voltage
- 12V DC, 24V DC, 230V AC, 110V AC
Function

Connection blocks/adapter plates:

<table>
<thead>
<tr>
<th>BA2 ..</th>
<th>BA2 A5</th>
<th>BA2 A8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct mounting onto type A, AF etc. connection blocks at type KA, MP, MPN, HC, HK(F), HKL compact hydraulic power packs</td>
<td>Version for pipe connection without pressure-limiting valve</td>
<td>Like version BA2 A5 but with check valve in R</td>
</tr>
</tbody>
</table>

Sub-plates for plate assembly valve

<table>
<thead>
<tr>
<th>BA2../0</th>
<th>BA2../1</th>
<th>BA2../2</th>
</tr>
</thead>
</table>

Valve section additional options

<table>
<thead>
<tr>
<th>Intermediate plates for 2nd speed with orifice/throttle in P and T gallery</th>
<th>Intermediate plate for variable speed adaptation via proportional throttle in P and T gallery</th>
</tr>
</thead>
<tbody>
<tr>
<td>/NZP16(T)V/P(T)Q20...</td>
<td>/NZP16(T)VP</td>
</tr>
<tr>
<td>/NZP16(T)S/P(T)B...</td>
<td>/NZP16(T)SP</td>
</tr>
</tbody>
</table>

Example: .../NZP16TV/TB1.0/... Type B1.0 orifice and type EM21V by-pass valve in T gallery

Example: .../NZP16VP/... Type EMP21V proportional throttle valve in P gallery
Intermediate plate (series connection) with pressure-reducing valve for pressure reduction of the subsequent P gallery ...

Example: BAZ-CZ2/180/5R
Type CDK3 pressure-reducing valve set to 180 bar with check valve

Intermediate plates (parallel connection) with pressure-reducing valve in P gallery ...

Example: .../NZP16CZ08/350/B0.8R/...
Type CDK0.8 pressure-reducing valve set to 350 bar with orifice and check valve in P gallery

Actuations:

- **M**: Solenoid actuation ($p_{\text{max}} = 400$ bar)
- **GM**: Solenoid actuation ($p_{\text{max}} = 250$ bar)
- **H**: Hydraulic actuation
- **P**: Pneumatic
- **A**: Manual actuation
- **T**: Pin
- **K**: Roller

End plates

<table>
<thead>
<tr>
<th>Series</th>
<th>-1</th>
<th>-6</th>
<th>-422</th>
<th>-8</th>
<th>-80/-8W</th>
<th>-880/(88W)/...</th>
</tr>
</thead>
<tbody>
<tr>
<td>with drain valve</td>
<td>with drain valve and pressure switches</td>
<td>with accumulator port and drain valve</td>
<td>with accumulator port and release valve</td>
<td>with two accumulator ports and release valve</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

www.hawe.de | 2016
General parameters and dimensions

Mounted valve type BA

<table>
<thead>
<tr>
<th>Q_{max} [lpm]</th>
<th>p_{max} [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
<th>Valve section</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA2</td>
<td>20</td>
<td>G 1/4, G 3/8</td>
<td>139</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>
Type HK compact hydraulic power pack size 4:
connection block with accumulator charging valve, setting: 50 bar,
pressure-limiting valve, setting: 60 bar,
filter and pressure switch, setting: 45 bar

Parameters of the example circuit:
- \(Q_{pu} = 16 \text{ lpm (at 1450 rpm)} \)
- \(p_{max} = 110 \text{ bar} \)
- \(p_\text{system} = 60 \text{ bar} \)
 (pressure-limiting valve setting)
- \(p_{\text{switch-off feature}} = 50 \text{ bar} \)
- \(V_{\text{load}} = \text{approximately 5 l} \)

HK 449 LDT/1 - Z16
- AL21R F2 - F/50/60 - 7/45

Type BA2 valve bank with four industrial standard valves mounted on sub-plates, two clamping functions for work piece clamping, two additional functions for indexing and tool clamping

- BS2
- NSMD2W/GRK/B2.0/0
- NSMD2W/GRK/B2.0/0
- NSWP2D/20/1/20/1
- NBVP16G/0
- 8 - AC2001/35 - L24

Associated technical data sheets:
- Valve bank (nominal size 6) type BA: D 7788
- Intermediate plate type NZP: D 7788 Z

Suitable compact hydraulic power packs:
- See chapter on hydraulic power packs

Suitable connection block:
- Type A: Page 68

Products suitable for combination:
- Clamping module type NSMD: D 7787
- Directional spool valve type NSWP: Page 88
- Directional seated valves type NBVP: D 7451 AT
- Pressure switches type DG: Page 270
- Hydraulic accumulator type AC: Page 266

Suitable accessories:
- Line connector type MSD and others: D 7163
Mounted valves

1.2 Valve bank (directional seated valve) type BVH

A valve bank combines different valves for operating independent consumers. The valve bank type BVH comprises several directional seated valves that are connected in parallel. As cone valves the directional seated valves have zero leakage in the closed state. The valve sections are connected using banjo bolts. 2/2, 3/2, 4/2 and 4/3-way directional seated valves are available. Depending on the functional requirement, pressure reducing valves, pressure switches, check valves, restrictors or restrictor check valves are integrated into the valve section. The valve bank can be flange-mounted directly on compact hydraulic power packs or integrated into a pipe system via a piping block.

Features and benefits:
- Flexible expandability
- Compact and lighter design (elimination of the base plates)

Intended applications:
- Auxiliary and clamping functions on machine tools and fixtures
- Auxiliary and clamping functions on forming machine tools
- Brake and rotor adjustment modules on wind turbines

Nomenclature:
- Valve sections
- Directional seated valve
- Zero leakage

Version:
- Valve sections for pipe connection

Actuation:
- Solenoid

P_{max}: 400 bar

Q_{max}: 20 lpm

Design and order coding example

<table>
<thead>
<tr>
<th>BVH 11</th>
<th>M/CZ/35/M/R/2</th>
<th>- 8</th>
<th>- G24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve sections</td>
<td>Solenoid voltage</td>
<td>12V DC, 24V DC, 110V AC, 230V AC</td>
<td></td>
</tr>
<tr>
<td>End plate</td>
<td>With tapped plugs at P, R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With accumulator port and drain valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With individual pressure reduction (parallel connection)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional elements:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure-reducing valves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orifice and/or check valve in P gallery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orifice or restrictor check valve for A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return pressure block in R gallery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure switches for A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic type</td>
<td>Type BVH 11 for direct mounting onto connection blocks type A etc. (for compact hydraulic power packs type KA, MPN, HC, HK, HKF, HKL)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Function

Connection blocks/adapter plates:

BVH

Direct mounting onto connection blocks type A etc. for compact hydraulic power packs type KA, MPN, HC, HK, HKF, HKL

Valve sections:

<table>
<thead>
<tr>
<th>H</th>
<th>M</th>
<th>W</th>
<th>D</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional options for the valve sections:

Individual pressure reduction (parallel connection)

<table>
<thead>
<tr>
<th>BVH 11 H/CZ...</th>
<th>BVH 11 W/CZ...</th>
<th>BVH 11 G/CZ...</th>
<th>BVH 11 ZD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actuations:

- **M:** Solenoid actuation ($p_{max}=400$ bar)
- **GM:** Solenoid actuation ($p_{max}=250$ bar)

End plates:

- **-1**
 - Tapped plug at P, R
- **-81**
 - with accumulator port and drain valve
General parameters and dimensions

(A1F1/310)

- BVH 11 H/M/R/2
- BVH 11 M/M/R B2.5/3
- BVH 11 W/CZ 5/35/M/R/22 - 81 - G 24

Type BVH valve bank for direct mounting at type A connection block

Valve section 1 with 3/2-way function circuit symbol H, P check valve (coding R), no pressure switch (coding 2)
Valve section 2 with 3/2-way function circuit symbol M, check valve and orifice in P gallery (coding R, B, 2, 5) and pressure switch for A (coding 3)
Valve section 3 with 4/2-way function circuit symbol W, individual pressure-reducing valve set to 35 bar (coding CZ5/35) and check valve in P gallery (coding R), no pressure switch

End plate for accumulator port (coding 8) and 24V DC solenoid voltage

Mounted valve type BVH

<table>
<thead>
<tr>
<th>Q_{max} [lpm]</th>
<th>p_{max} [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
<th>Valve section</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVH</td>
<td>20</td>
<td>400</td>
<td>A, B, P, R, M</td>
<td>60</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>40/50</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H1</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example circuit:

KA 281 SKT/Z 9.8

Type KA compact hydraulic power pack
1 kW motor output;
Connection block with return line filter
and TÜV-approved safety valve
set to 120 bar

Type BVH valve bank with three valve segments, two
clamping functions with individually adjustable clamping
pressure

- AX 3 F 1 E/120
- BVH 11 W/M/RH/2
- BVH 11 M/CZ5/35/M/RHB 2.5
- BVH 11 M/CZ5/35/M/RHB 2.5
- 82-X 24 - AC 2001/60/3/A 3x400V 50 Hz

Parameters of the example circuit:
- \(Q_{pu} = 9.8 \text{ lpm (at 1450 rpm)} \)
- \(p_{\text{max}} \) = 170 bar
- \(p_{\text{system}} \) = 120 bar
- \(p_{\text{switch-off feature}} \) = 50 bar
- \(V_{\text{load}} \) = approximately 3 l

Associated technical data sheets:
- Valve bank (directional seated valve) type BVH: D 7788 BV

Compact hydraulic power packs:
- See section
 "Compact hydraulic power packs"

Connection blocks:
- Type A: Page 68

Combinable products:
- Directional seated valves type NBVP:
 Page 144
- Pressure reducing valves type CDK, DK:
 Page 186

Accessories:
- Pressure switches type DG: Page 270
- Hydraulic accumulator type AC: Page 266

Plug:
- Line connector type MSD and others:
 D 7163
Directional spool valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directional spool valve type SG and SP</td>
<td>84</td>
</tr>
<tr>
<td>Directional spool valve type SW, SWP and NSWP</td>
<td>88</td>
</tr>
<tr>
<td>Directional spool valve bank type SWR and SWS</td>
<td>92</td>
</tr>
<tr>
<td>Directional spool valve type HSF</td>
<td>96</td>
</tr>
<tr>
<td>Proportional directional spool valve type EDL</td>
<td>98</td>
</tr>
<tr>
<td>Directional spool valve bank type DL</td>
<td>102</td>
</tr>
<tr>
<td>Proportional directional spool valves type PSL and PSV</td>
<td>106</td>
</tr>
<tr>
<td>Proportional directional spool valve type PSLF, PSLV and SLF</td>
<td>112</td>
</tr>
<tr>
<td>Clamping module type NSMD</td>
<td>116</td>
</tr>
</tbody>
</table>
On/off directional spool valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/version</th>
<th>Actuation</th>
<th>P_{max} (bar)</th>
<th>Q_{max} (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG, SP</td>
<td></td>
<td>- Solenoid</td>
<td>SG - 0: 400</td>
<td>SG - 0: 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Manual</td>
<td>SG - 1: 400</td>
<td>SG - 1: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mechanical</td>
<td>SG - 2: 400</td>
<td>SG - 2: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pressure-actuated</td>
<td>SG - 3: 400</td>
<td>SG - 3: 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SG - 5: 400</td>
<td>SG - 5: 100</td>
</tr>
<tr>
<td></td>
<td>Individual valve</td>
<td></td>
<td>SP - 1: 400</td>
<td>SP - 1: 12</td>
</tr>
<tr>
<td></td>
<td>Individual manifold</td>
<td></td>
<td>SP - 3: 400</td>
<td>SP - 3: 50</td>
</tr>
<tr>
<td></td>
<td>mounting valve</td>
<td></td>
<td>SP - 5: 400</td>
<td>SP - 5: 100</td>
</tr>
<tr>
<td>SW, SWP, NSWP</td>
<td></td>
<td>- Solenoid</td>
<td>SW - 1: 315</td>
<td>SW - 1: 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SW - 2: 315</td>
<td>SW - 2: 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SWP - 1: 315</td>
<td>SWP - 1: 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SWP - 2: 315</td>
<td>SWP - 2: 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSWP - 2: 315</td>
<td>NSWP - 2: 25</td>
</tr>
<tr>
<td>SWR, SWS</td>
<td></td>
<td>- Solenoid</td>
<td>SWR - 1: 315</td>
<td>SWR - 1: 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SWS - 2: 315</td>
<td>SWS - 2: 25</td>
</tr>
<tr>
<td>HSF</td>
<td></td>
<td>- Electro-hydraulic</td>
<td>3: 400</td>
<td>3: 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Hydraulic</td>
<td>4: 400</td>
<td>4: 160</td>
</tr>
</tbody>
</table>
Proportional directional spool valve

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/version</th>
<th>Actuation</th>
<th>(p_{\text{max}}) (bar)</th>
<th>(q_{\text{max}}) (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDL</td>
<td>Prop. directional spool valve (Load-Sensing), valve bank</td>
<td>- Solenoid</td>
<td>2: 320</td>
<td>2: 50</td>
</tr>
<tr>
<td></td>
<td>• Connected in series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSL, PSV</td>
<td>Prop. directional spool valve (Load-Sensing), valve bank</td>
<td>- Manual</td>
<td>2: 420</td>
<td>2: 60</td>
</tr>
<tr>
<td></td>
<td>• Connected in series</td>
<td>- Electro-hydraulic</td>
<td>3: 420</td>
<td>3: 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pressure</td>
<td>5: 400</td>
<td>5: 270</td>
</tr>
<tr>
<td>PSLF, PSVF, SLF</td>
<td>Prop. directional spool valve (Load-Sensing), individual valve</td>
<td>- Manual</td>
<td>3: 420</td>
<td>3: 120</td>
</tr>
<tr>
<td></td>
<td>• Individual manifold mounting valve</td>
<td>- Electro-hydraulic</td>
<td>5: 400</td>
<td>5: 270</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pressure</td>
<td>7: 420</td>
<td>7: 500</td>
</tr>
<tr>
<td></td>
<td>• Valve bank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• With sub-plates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Nomenclature/version</td>
<td>Actuation</td>
<td>p_{max} (bar)</td>
<td>q_{max} (lpm)</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| NSMD | Combination of directional spool valve and pressure-reducing valve
As individual valve
- Individual manifold mounting valve
As valve bank
- Valve banks are available with type BA | - Solenoid | 2: 120 | 2: 25 |
Directional spool valves

2.1 Directional spool valve type SG and SP

Directional spool valves are a type of directional valve. They control the direction of movement and the velocity of single and double-acting hydraulic consumers. The directional spool valve type SG is available as a single valve for pipe connection. Type SP is available as a valve for manifold mounting. Due to the robust design the directional spool valve type SG and SP reaches operating pressures up to 400 bar. It is of versatile use due to different types of actuation. Intended applications include mobile hydraulics, in particular in special vehicles, in municipal trucks and in shipbuilding.

Features and benefits:
- Sturdy design
- Suited for maritime applications
- Various actuation variants

Intended applications:
- Mining machinery
- Cranes and lifting equipment
- Ship building
- Road vehicle

Nomenclature:
| Directional spool valve |

Design:
| Individual valve for pipe connection or manifold mounting |

Actuation:
| Solenoid |
| Manual |
| With automatic return spring |
| With detent |
| Mechanical |
| Roller head |
| Pin head |
| Pressure (only or combined with manual actuation) |
| Hydraulic |
| Pneumatic |

P_{max}: 400 bar

Q_{max}: 100 l/min
Design and order coding example

<table>
<thead>
<tr>
<th>SP 1</th>
<th>D</th>
<th>E</th>
<th>- A</th>
<th>- MD 3/24</th>
<th>- 120</th>
</tr>
</thead>
</table>

Pressure setting pressure limiting valve [bar]

Actuation mode

Pressure limiting valve

Function
- Parallel- or series connection
- Directional spool valves either with positive (blocked between switching positions) or negative (slightly floating position) overlap
- SP 1 with/without check valve insert

Basic type and size
- Directional spool valve SG 0 to 5, SP 1, SP 3, SP 5
- Directional spool valves type SP for manifold mounting, sizes 1, 3, 5

Function

Basic symbol

<table>
<thead>
<tr>
<th>SG</th>
<th>SP</th>
</tr>
</thead>
</table>

Individual valve for pipe connection

Individual valve for manifold mounting

With pressure-limiting valve

Circuit symbol

<table>
<thead>
<tr>
<th>G</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>N</th>
<th>W</th>
<th>R</th>
<th>V</th>
<th>Z</th>
<th>U</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>F</th>
<th>H</th>
<th>Y</th>
<th>S</th>
<th>X</th>
</tr>
</thead>
</table>

- Circuit symbol Z, U, X: only for size 2, 3 and 5
Actuations:

<table>
<thead>
<tr>
<th>Manual</th>
<th>Solenoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, AK</td>
<td>C, CK</td>
</tr>
<tr>
<td>Return spring</td>
<td>Detent</td>
</tr>
</tbody>
</table>

Solenoid voltage:
12V DC, 24V DC, 110V AC, 230V AC

Actuations:

<table>
<thead>
<tr>
<th>Mechanical</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE, RD</td>
<td>BE, BD</td>
</tr>
<tr>
<td>Roller head</td>
<td>Pin head</td>
</tr>
</tbody>
</table>

Actuation forces:
90 - 280 N (according to size)

Control pressures:
pneumatic 5 - 10 bar
hydraulic 12 - 20 bar

Actuations:

<table>
<thead>
<tr>
<th>Double acting</th>
</tr>
</thead>
<tbody>
<tr>
<td>KD</td>
</tr>
<tr>
<td>Pneumatic / manual</td>
</tr>
</tbody>
</table>

Control pressure:
Pneumatic 5 ... 10 bar
Hydraulic 12 ... 20 bar
General parameters and dimensions

<table>
<thead>
<tr>
<th>Q<sub>max</sub> [lpm]</th>
<th>Operating pressure p<sub>max</sub> [bar] for actuation</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m<sub>max</sub> [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solenoid</td>
<td>Manual/</td>
<td>H</td>
<td>H1</td>
</tr>
<tr>
<td></td>
<td>Mechanical</td>
<td>pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG 0</td>
<td>12</td>
<td>200</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>SG 1</td>
<td>20</td>
<td>200</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>SG 2</td>
<td>30</td>
<td>315</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>SG 3</td>
<td>50</td>
<td>315</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>SG 5</td>
<td>100</td>
<td>200</td>
<td>315</td>
<td>400</td>
</tr>
<tr>
<td>SP 1</td>
<td>20</td>
<td>200</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>SP 3</td>
<td>50</td>
<td>315</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Directional spool valve type SG and SP: D 5650/1
- Actuations:
 - Manual operation for directional spool valves, type S: D 6511/1
 - Electrical operation for directional spool valves type S: D 7055
 - Mechanical operation for directional spool valves, type S: D 5870
 - Pressure actuation for directional spool valves: D 6250

Male connectors:
- Line connector type MSD and others: D 7163
- With economy circuit: D 7813, D 7833
Directional spool valves

2.1 Directional spool valve type SW, SWP and NSWP

Directional spool valves are a type of directional valve. They control the direction of movement and the velocity of single and double-acting hydraulic consumers.

The directional spool valve type NSWP and SWP is available as a manifold mounting valve. Type NSWP is available with a nominal size 6 hole pattern (NG 6). Type SW is available as a single valve for pipe connection. The directional spool valve type NSWP can be flexibly adapted to different control tasks by means of additional functions in the pump line and/or on the consumer side (e.g. restrictors, restrictor check valves).

Intended applications for the directional spool valve type NSWP, SWP and SW include industrial hydraulics, in particular machine tools.

Features and benefits:

Intended applications:

Design and order coding example

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Directional spool valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Individual valve for pipe connection</td>
</tr>
<tr>
<td></td>
<td>Individual manifold mounting valve</td>
</tr>
<tr>
<td></td>
<td>Valve bank manifold mounting</td>
</tr>
<tr>
<td></td>
<td>Combination with hydraulic power packs</td>
</tr>
<tr>
<td>Actuation</td>
<td>Solenoid</td>
</tr>
<tr>
<td>p_{max}</td>
<td>315 bar</td>
</tr>
<tr>
<td>Q_{max}</td>
<td>25 l/min</td>
</tr>
</tbody>
</table>

NSWP2 G /M /R / ABR1,0 /50 /G24 - 3/8

Single connection block for direct installation in the pipe G 3/8 (type NSWP and SWP2)

Voltage of the actuation solenoids 12V DC, 24V DC, 110V AC, 230V AC

- Solenoids with various plug versions

Pressure switch or pressure gauge at A or B

Additional elements at A and/or B Restrictor check valve or orifice

Additional elements at P Check valve or orifice

- black/white solenoid or proportional solenoid
- Solenoid with detent
- Solenoid version conforming ATEX ($p_{\text{max}} = 210$ bar)

Solenoid version

Function

- Indiv. valve with check valve or orifice in gallery P and/or check valve in gallery R (type SWP)
- Indiv. valve with 6/2-way function

Basic type, size

Directional spool valve SW, SWP size 1 and 2
NSWP size 2, connection hole pattern NG 6 (CETOP)
Function

Sub-plate for pipe connection

- 1/4 S(R)

Sub-plate with pressure limiting valve

1) Only for type SWP 1
2) Only for type NSWP and SWP 2

Valve sections

Basic symbol

<table>
<thead>
<tr>
<th>Individual valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
</tr>
</tbody>
</table>

Valve sections

Circuit symbol

May be connected either in parallel or in series within a valve bank

<table>
<thead>
<tr>
<th>G</th>
<th>D</th>
<th>E</th>
<th>O</th>
<th>C</th>
<th>N</th>
<th>B</th>
<th>W</th>
<th>K</th>
<th>Q</th>
<th>R</th>
<th>U</th>
</tr>
</thead>
</table>

Only connected in series within a valve bank (only type SW1)

<table>
<thead>
<tr>
<th>L</th>
<th>F</th>
<th>H</th>
<th>S</th>
<th>Y</th>
<th>G</th>
<th>D</th>
</tr>
</thead>
</table>

3) Only for type SWR 1
General parameters and dimensions

<table>
<thead>
<tr>
<th></th>
<th>Q_{max} [lpm]</th>
<th>p_{max} [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>B</td>
<td>T</td>
</tr>
<tr>
<td>Individual directional spool valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW/SWP 1</td>
<td>12</td>
<td>315</td>
<td>G 1/4</td>
<td>77 ... 90</td>
<td>40 ... 44</td>
</tr>
<tr>
<td>SW/SWP 2</td>
<td>25</td>
<td>315</td>
<td>G 3/8, G 1/4</td>
<td>78 ... 82.5</td>
<td>60 ... 70</td>
</tr>
<tr>
<td>NSWP2</td>
<td></td>
<td></td>
<td>NG 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Circuit example 1:

BA2-A5
-NSWP2G/M/03/NZP16V/PQ20/0
-NSWP2G/M/R/B1,0
-NSWP2K/M/20/0
-NSWP2K/M/20/NZP16Q33/0
-2-L24
Circuit example 2:

HKF44V9LD/1-Z16
-AL21D10V-F60/80-2
-BA2-NSMD2K/G/B2/0
-NSMD2G/GRK/B2/0
-NSWP2W/M/B1,0/06/S/0
-NG6X/0
-NSWP2W/M/B1,0/06/S/0
-NSMD2G/GRK/B2/0
-NG6X/0
-NSMD2K/G/B2/0
-80-AC2001/40-X24

Combinable products:
- Valve bank type BA: Page 70
- Intermediate plate type NZP: D 7788 Z
- 6/2-way directional valve: Sk 7951-3-6/2

Similar products:
- Valve banks types SWR and SWS: Page 92
- Clamping modules type NSMD: Page 116

Associated technical data sheets:
- Directional spool valve type SW: D 7451
- Directional spool valve type NSWP 2: D 7451 N

Male connectors:
- Line connector type MSD and others: D 7163
- With economy circuit: D 7813, D 7833
Directional spool valve

2.1 Directional spool valve bank type SWR and SWS

Directional spool valves are a type of directional valve. They control the direction of movement and the velocity of single and double-acting hydraulic consumers. The directional spool valve bank type SWS is available with series connection. The consumers can be operated with on-off or proportional control. Versions are available for usage in potentially explosive atmospheres. By means of additional functions in the pump line, in the intermediate plates (longitudinal and sandwich valve combination) and ancillary blocks the directional spool valve bank can be flexibly adapted to different control tasks.

Intended applications include mobile hydraulics, in particular civil engineering, agricultural engineering and material handling.

Features and benefits:
- Can be combined for forklift trucks with lifting modules
- Proportional movements can also be controlled independently of the load
- Extensive range of ancillary blocks
- Compact and extremely space-saving dimensions

Intended applications:
- Material handling
- Wind turbines
- Construction and construction materials
- Handling and assembly techn.
- Municipal trucks

Design and order coding example

<table>
<thead>
<tr>
<th>SWR1</th>
<th>A-6/230</th>
<th>- GG</th>
<th>- 1</th>
<th>- G24</th>
</tr>
</thead>
</table>

Solenoid voltage: 12V DC, 24V DC, 110V AC, 230V AC
- Solenoids with various plug versions

End plate
- Additional ports P and/or R (P can be blocked)
- Idle circulation valve (ON/OFF, proportional)
- End spool valve

Valve sections
- Directional spool valve
- Additional options for the valve sections:
 - Options upstream (orifice, flow controller)
 - Consumer-side additional functions in ancillary block, e.g. double check valves, shock valves (load-holding valves etc.)

Connection block/adapter plate
- Pressure limiting valve (for pipe connection)
- Idle circulation valve
- 3-way flow controller

Nomenclature:
- Directional spool valve

Design:
- Valve bank
- Combination with hydraulic power packs

Actuation:
- Solenoid

- \(p_{\text{max}} \): 315 bar
- \(q_{\text{max}} \): 25 l/min

Basic type, size
- Type SWR 1 and SWS 2
Function

Connection blocks:

- **A 6**

 ![Diagram A 6]

 With fixed pressure limiting valve (for pipe connection)

- **F/D**

 ![Diagram F/D]

 For direct mounting onto hydraulic power packs (type KA, HC, MP, HK)

Valve sections:

<table>
<thead>
<tr>
<th>Basic symbol</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWR 1</td>
<td>G</td>
</tr>
<tr>
<td>SWS 2</td>
<td>D</td>
</tr>
</tbody>
</table>

![Diagram SWR 1/SWS 2]

- **Ancillary block with additional function**
 - **(consumer-side)**
 - **Additional function**
 - **(on the pump side)**

- **Spool valves suited for prop. actuation**
 - **G**
 - **D**

![Diagram Spool valves]

Additional versions for valve sections:

- b/w solenoids with stroke limitation
- prop. solenoids with stroke limitation
- solenoids also available in ATEX-compliant version ($p_{\text{max}} = 210$ bar)

End plates (SWR 1/SWS 2):

<table>
<thead>
<tr>
<th>Series</th>
<th>With circulation valve</th>
<th>With lockable pump output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram End plates]

Ancillary block type SWS 2 with additional functions (consumer side):

<table>
<thead>
<tr>
<th>Releasable check valve</th>
<th>Shock valve</th>
<th>Sequence valve</th>
<th>Over center valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram Releasable check valve]</td>
<td>![Diagram Shock valve]</td>
<td>![Diagram Sequence valve]</td>
<td>![Diagram Over center valve]</td>
</tr>
</tbody>
</table>
General parameters and dimensions

SWR 1, SWS 2

<table>
<thead>
<tr>
<th></th>
<th>Q<sub>max</sub> [lpm]</th>
<th>P<sub>max</sub> [bar]</th>
<th>Ports</th>
<th>Dimensions [mm]</th>
<th>m<sub>max</sub> [kg]</th>
<th>Individual section</th>
<th>Connection block</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWR 1</td>
<td>12</td>
<td>315</td>
<td>G 1/4</td>
<td>H: 77 - 90, B: 40, T: 40</td>
<td>1.1 - 1.5</td>
<td>0.6 - 0.7</td>
<td></td>
</tr>
<tr>
<td>SWS 2</td>
<td>25</td>
<td>315</td>
<td>G 3/8, G 1/4</td>
<td>H: 78 - 82.5, B: 60, T: 40</td>
<td>1.1 - 2.4</td>
<td>approx. 0.8</td>
<td></td>
</tr>
</tbody>
</table>

Connection block | Valve section | End plate

Stroke limitation

Q_{max}

P_{max}

Ports

Dimensions

m_{max}

Individual section

Connection block
Circuit example:

1. Valve section flow pattern G with solenoid actuation, no additional function in gallery P, with ancillary block featuring releasable check valves for ports A and B

2. Valve section flow pattern G with prop. solenoid actuation (MP) and stroke limitation for A and B (FAB), max. flow for ports A and B is 10 lpm, flow control in gallery P of the basic valve body (DW), ancillary block with over center valves (factory set to A = 180 bar and B = 140 bar)

3. Valve section flow pattern E with solenoid actuation, check valve in gallery P, ancillary block featuring shock and suction valves for ports A and B (both factory set to 100 bar), standard end plate. All solenoids 24V DC

Associated technical data sheets:
- Directional spool valve type SW: D 7451
- Directional spool valve bank type SWS: D 7951

Suitable products for combination:
- Pressure switches type DG3..., DG5.E: Page 270

Suitable male connectors:
- Line connector type MSD and others: D 7163
- With economy circuit: D 7813, D 7833/1
Directional spool valve

2.1 Directional spool valve type HSF

Directional spool valves are a type of directional valve. They control the direction of movement and the velocity of single and double-acting hydraulic consumers. The directional spool valve type HSF is a manifold mounting valve. Due to the robust design, it reaches operating pressures of up to 400 bar.

Adjustable threaded throttles are used to adjust the response time. Harsh switching operations and decompression surges, particularly in the event of high pressure and large consumer volumes, can be avoided this way.

Features and benefits:
- Smooth switching for large flow rate
- Suitable for high pressures due to steel housing

Intended applications:
- Mining machinery (incl. oil production)
- Cranes and lifting equipment
- Construction and construction materials machinery
- Material handling (industrial trucks, etc.)

Nomenclature:
- Directional spool valve

Design:
- Individual valve for manifold mounting

Actuation:
- Electro-hydraulic

Hydraulic
- \(p_{\text{max}} \): 400 bar
- \(Q_{\text{max}} \): 80 ... 160 lpm

Design and order coding example

<table>
<thead>
<tr>
<th>HSF4</th>
<th>/C321</th>
<th>- L</th>
<th>-</th>
<th>- G24</th>
<th>- 300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pressure setting pressure limiting valve [bar]

Solenoid voltage: 12V DC, 24V DC, 98V DC, 205V DC, 110V AC, 230V AC

End plate: Internal or external control oil return

Valve sections: With/without adjustable switching speed

Connection block:
- With/without pressure limiting valve (Fixed or manually adjustable)
- Internal or external control oil supply (max. 160 bar)

Basic type and size:
- Type HSF: Manifold mounting
Valve sections:

<table>
<thead>
<tr>
<th>Basic symbol</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSF</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>

Function

Manifold mounting valve

Associated technical data sheets:
- Directional spool valve types PSL and PSV: D 7700-2; D 7700-3
- Directional spool valve type HSF: D 7493 E
- Directional spool valve type HSL: D 7493 L

Male connectors:
- Line connector type MSD and others: D 7163
- With economy circuit: D 7813, D 7833/1

General parameters and dimensions

<table>
<thead>
<tr>
<th>Q_{max} [l/min]</th>
<th>p_{max} [bar]</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>B</td>
</tr>
<tr>
<td>HSF 3</td>
<td>80</td>
<td>400</td>
<td>137</td>
</tr>
<tr>
<td>HSF 4</td>
<td>160</td>
<td>400</td>
<td>157</td>
</tr>
</tbody>
</table>

www.hawe.de | 2016
11-2015-4.4 - Directional spool valve type HSF 97
Directional spool valve

2.1 Proportional directional spool valve type EDL

Proportional directional spool valves are a type of directional valve. They control the direction of movement and the velocity of individual or multiple hydraulic consumers actuated simultaneously. Control is independent of the load and continuous.

The directional spool valve type EDL with series connection is actuated directly. The flows for the individual consumers can be individually adjusted. By means of additional functions in the intermediate plates (longitudinal and sandwich valve combination) and ancillary blocks the proportional directional spool valve can be flexibly adapted to different control tasks.

The directional spool valve type EDL can be combined directly with the proportional directional spool valve type PSL and PSV in size 2. It is used in mobile hydraulics, in particular in civil engineering and agricultural engineering.

Features and benefits:
- One product for various control functions and small volume quantities
- Energy-saving closed-centre systems
- Compact and lightweight design
- Modular system can be directly combined with type PSL/PSV-2

Intended applications:
- Construction and construction materials machinery
- Cranes and lifting equipment
- Machines for forestry and agricultural purposes
- Municipal trucks

Design and order coding example

EDL - DA2 L 40/25 E /2 - G24

Solenoid voltage 12V DC, 24V DC
- Actuated via prop. amplifier or PLVC

Ancillary blocks

Confirmation Type E, EI

Volumetric flow Volumetric flow indicator, side A, B (3...40)

Spool Type L, H

Spool block Block with inflow controller

Basic type Type EDL directly actuated proportional directional spool valve

Nomenclature:
- Directly
 Prop. directional spool valves as per load-sensing principle

Version:
- Valve bank in series connection

Actuation:
- Solenoid-actuated

p\text{max}:
- 320 bar

Q\text{max}, consumer:
- 3 ... 40 l/min

Q\text{max}, aux:
- Approx. 80 l/min
Function

Valve sections:

Circuit symbol

<table>
<thead>
<tr>
<th>L</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>P</td>
</tr>
<tr>
<td>A</td>
<td>P</td>
</tr>
</tbody>
</table>

Versions of valve sections:

- Shock and servo-suction valves
- Load-holding valves
- Check valves with release, no leakage
- Floating and block functions can be switched

Characteristic values for max. volumetric flows:

<table>
<thead>
<tr>
<th>Size 2</th>
<th>Q_{A, B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

- Characteristic value corresponds to the max. volumetric flow [lpm] of inflow controller versions at the consumer ports A and/or B
- Volumetric flows for A and/or B can be selected separately

Actuations:

<table>
<thead>
<tr>
<th>Basic type</th>
<th>Brief description</th>
<th>Circuit symbol (example)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>electrical actuation with stroke limitation</td>
<td></td>
</tr>
<tr>
<td>EI</td>
<td>electrical actuation without stroke limitation</td>
<td></td>
</tr>
</tbody>
</table>
General parameters and dimensions

PSL/EDL

<table>
<thead>
<tr>
<th>Flow [lpm]</th>
<th>Oper. pressure [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{max}</td>
<td>$Q_{\text{pu max}}$</td>
<td>P, R</td>
<td>A, B</td>
<td>H</td>
</tr>
<tr>
<td>3 ... 40</td>
<td>80</td>
<td>320</td>
<td>G 1/2, 3/4-16 UNF-2B</td>
<td>G 3/8, 3/4-16 UNF-2B</td>
</tr>
</tbody>
</table>

1 Dep. on actuation and additional functions
Example circuit:
PSV 3-2
- DA2M40/25/E/2
- E4
- G24

Associated technical data sheets:
- Proportional directional spool valve type EDL: D 8086
- Proportional directional spool valve, type PSL and PSV size 2: D 7700-2
- Proportional directional spool valve, type PSL, PSM and PSV size 3: D 7700-3
- Proportional directional spool valve, type PSL, PSM and PSV size 5: D 7700-5
- Connection block type HMPL and HMPV for proportional directional spool valve: D 7700 H
Directional spool valve

2.1 Directional spool valve bank type DL

Throttling directional spool valves are a type of directional valve. They continuously and manually meter the flow rate in hydraulic systems with single and double-acting consumers. The throttling directional spool valve type DL influences the speed of the consumer by throttling the pump circulation via a parallel circuit (bypass control). The close fit of the spool in the throttling directional spool valve means that the leakage is limited to a minimum for lifting functions.

The throttling directional spool valve type DL is suitable for applications in material handling and for lifting equipment.

Features and benefits:
- Compact design with up to 10 segments
- Various actuation variants for manual actuation
- Simple pressure reductions in downstream sections using intermediate plates
- Combinations possible for controlling lifting devices

Intended applications:
- Material handling (industrial trucks, etc.)
- Machines for agricultural and forestry purposes
- Construction and construction materials machinery
- Road vehicle

Design and order coding example

<table>
<thead>
<tr>
<th>DL3</th>
<th>1</th>
<th>3</th>
<th>GGD</th>
<th>B/E1</th>
<th>2</th>
<th>210</th>
</tr>
</thead>
</table>

- Pressure specification [bar]
- End plate
- Actuation, mounting
 - Valve sections:
 - Directional spool valve
 - Valve section options:
 - Intermediate plate with pressure-limiting valve for all downstream valve sections
 - Additional functions on the consumer side in the ancillary block (e.g. double check valves, shock valves, load-holding valves etc.) (size 3)
- Port size: G 1/4, G 3/8, G 1/2 (BSPP)
- Connection block:
 - With/without pressure limiting valve
 - With shock valve
- Basic type, size: Type DL, sizes 1 to 4

Nomenclature: Throttling directional spool valve
Design: Valve bank, featuring integrated by-pass idle pump circulation
Actuation: Manual:
- Return spring, detent
P_max: 250 ... 315 bar
Q_max: 12 ... 90 lpm
Function

Connection blocks:

<table>
<thead>
<tr>
<th>DL .5</th>
<th>DL .1</th>
</tr>
</thead>
</table>

[Diagram]

Without pressure-limiting valve With pressure-limiting valve

Valve sections:

<table>
<thead>
<tr>
<th>Basic symbol</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>G and B</td>
<td>D</td>
</tr>
</tbody>
</table>

[Diagram]

Reduced internal leakage due to reduced spool valve play

Versions of valve sections:

- Additional function on the pump side (orifice, 2-way flow control valve)
- Valve sections for size 3 with consumer-side additional functions in ancillary block (e.g. double check valves, shock valves, load-holding valves etc.)
- Manual operation with return spring for switching position “a” and detent for switching position “b”
- Manual operation with detent in both switching positions
- Manual operation with combinations of contact switch, switch cam and switch carrier
- Manual operation with different mounting directions

End plates:

<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
</tr>
</thead>
</table>

[Diagram]

Standard end plate with port R End plate for subsequent connection of a DL
General parameters and dimensions

<table>
<thead>
<tr>
<th>Q_{max} [lpm]</th>
<th>P_{max} [bar]</th>
<th>Tapped ports</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Characteristic value</td>
<td>A, B</td>
<td>H, P, R</td>
</tr>
<tr>
<td>DL 1</td>
<td>12 ... 16</td>
<td>315</td>
<td>1</td>
<td>G 1/4</td>
</tr>
<tr>
<td>DL 2</td>
<td>20 ... 30</td>
<td>315</td>
<td>1</td>
<td>G 1/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>315</td>
<td>2</td>
<td>G 3/8</td>
</tr>
<tr>
<td>DL 3</td>
<td>30 ... 60</td>
<td>250</td>
<td>2</td>
<td>G 3/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>3</td>
<td>G 1/2</td>
</tr>
<tr>
<td>DL 4</td>
<td>90</td>
<td>250</td>
<td>3</td>
<td>G 1/2</td>
</tr>
</tbody>
</table>
Example circuit:

DL 21-2-G D G71 N-B/E1-2-180

Size 2 DL directional spool valve with pressure-limiting valve (set to 180 bar), size 2 ports with G 3/8 tapped ports, symbols G, D, G, N; symbol G with pressure-limiting valve in port A (coding 71), valve sections with manual operation B (series with hand lever) and mounting type E1 (ports A, B are directed towards the front, valve spool is pushed into the housing for switching position “a”), valve bank with end plate 2 (coding 2).

Associated technical data sheets:
- Directional spool valve bank type DL: D 7260
Proportional directional spool valves are a type of directional valve. They control the direction of movement and the velocity of individual or multiple hydraulic consumers actuated simultaneously. Control is independent of the load and continuous.

The proportional directional spool valve type PSL is suitable for constant pump systems and type PSV for variable pump systems with a pressure/flow controller. The volumetric flows and load pressures for the individual consumers can be individually adjusted. The proportional directional spool valve type PSL and PSV can be adapted to various control tasks, e.g. for safety functions. All sizes can be combined with each other.

The proportional directional spool valve type PSL and PSV is used in mobile hydraulics, in particular in crane and lifting equipment, construction and mining machinery, drilling equipment as well as in offshore and marine technology.

Features and benefits:
- One product for various control functions and volume quantities
- Energy-saving Closed-Center systems
- Compact and lightweight design
- Modular system with wide range of design variants

Intended applications:
- Construction/construction material machinery
- Mining machinery (incl. oil production)
- Cranes and lifting equipment
- Machines for forestry and agricultural purposes

Design and order coding example

<table>
<thead>
<tr>
<th>PSL41F</th>
<th>/380</th>
<th>-</th>
<th>A2J40/40/EA/3</th>
<th>-</th>
<th>E4</th>
<th>-</th>
<th>G24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solenoid voltage</td>
<td>12V DC, 24V DC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End plates</td>
<td>Valve sections with actuation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>Connection block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various connection threads</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure limiting valve (piloted main pressure limiting valve)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suited for both constant and variable displacement pump systems (type PSM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basic type
- Type PSL (hydraulic oil supply by constant pump), sizes 2, 3 and 5
- Type PSV (hydraulic oil supply by variable pump), sizes 2, 3 and 5
- Type HMPL (hydraulic oil supply by constant pump) for industrial trucks, sizes 2 and 3
- Type HMPV (hydraulic oil supply by variable pump) for industrial trucks, sizes 2 and 3
Function

Connection blocks:

<table>
<thead>
<tr>
<th>PSL</th>
<th>PSV</th>
<th>HMPL (HMPV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional versions of connection blocks:
- 2/2-way solenoid valve for randomly switching the pump direction
- Additional damping option of the 3-way/pump controller
- Additional isolation valve to minimise the pump direction resistance
- Version with additional shut-off valve for the pump line, can be switched randomly
- Proportionally adjustable pressure limitation

Valve sections:

<table>
<thead>
<tr>
<th>Basic symbols</th>
<th>Circuit symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Versions of valve sections:
- Load pressure signal outputs at A, B; A and B together
- 3/3 directional spool valve with 2-way input and output controller
- Version with and without 2-way inflow controller
- Function deactivation feature
- Secondary pressure-limiting valves (can be selected for A and/or B)
- Prop. Pressure limitation of individual functions
- Version with ancillary blocks
- Intermediate plates for various additional functions
- Combination of various sizes possible in one valve bank
- Version with ATEX solenoid for use in explosive environments
- Version with explosion-proof, intrinsically safe magnets for mining applications
- Version with direct CAN actuation

Additional functions in the ancillary block:
- Shock and servo-suction valves
- Load-holding valves
- Differential circuits
- Check valves with release, zero-leakage
- Floating and block functions can be switched
- Proportional seated valves in accordance with D 7490/1 for lifting and lowering functions with plunger cylinders

Characteristic values for max. volumetric flows:

<table>
<thead>
<tr>
<th>Size</th>
<th>3</th>
<th>6</th>
<th>10</th>
<th>16</th>
<th>25</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 2</td>
<td>40</td>
<td>63</td>
<td>80</td>
<td>120</td>
<td>160</td>
<td>240</td>
</tr>
<tr>
<td>Size 3</td>
<td>40</td>
<td>63</td>
<td>80</td>
<td>120</td>
<td>160</td>
<td>240</td>
</tr>
<tr>
<td>Size 5</td>
<td>40</td>
<td>63</td>
<td>80</td>
<td>120</td>
<td>160</td>
<td>240</td>
</tr>
</tbody>
</table>

- Characteristic value corresponds to the max. volumetric flow [lpm] of inflow controller versions at the consumer ports A and/or B
- Volumetric flows for A and/or B can be selected separately
- Increasing the control pressure enables 60 lpm (size 2), 120 lpm (size 3) and 240 lpm (size 5) per consumer port side.
- Version with 2-way inflow controller and check valve function, or damping elements
Actuations:

<table>
<thead>
<tr>
<th>Basic type</th>
<th>Brief description</th>
<th>Circuit symbol (example)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Manual actuation</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Detent (continuous)</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Manual actuation via mechanical joystick</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Electro-hydraulic actuation</td>
<td></td>
</tr>
<tr>
<td>EA</td>
<td>in combination with manual actuation</td>
<td></td>
</tr>
<tr>
<td>EI CAN</td>
<td>CAN: Actuation variant with direct CAN actuation</td>
<td></td>
</tr>
<tr>
<td>EA CAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H, P</td>
<td>Hydraulic and pneumatic actuation</td>
<td></td>
</tr>
<tr>
<td>HA, PA</td>
<td>in combination with manual actuation</td>
<td></td>
</tr>
<tr>
<td>HEA</td>
<td>Combination of H, E and A actuation</td>
<td></td>
</tr>
</tbody>
</table>

Intermediate plates:

- Electrically or hydraulically actuated shut-off valve for all downstream consumers
- With pressure-limiting valve for limiting the operating pressure of all downstream valves
- For random switchable reduction of the volumetric flow of all downstream consumers
- Priority module, size 3

End plates:

- E1: Standard end plate
- E2: With additional Y-port for LS-input signal

Additional versions of end plates:

- End plate with internal leakage oil routing (no T gallery)
- End plates with additional P and R gallery
- Adapter plate to combine size 5 and 3 (coding ZPL 53), size 5 and 2 (coding ZPL 52) and size 3 and 2 (coding ZPL 32)
- End plate with integrated connection block function for dual-pump/dual-circuit systems
General parameters and dimensions

PSL

![Valve schematic](image)

<table>
<thead>
<tr>
<th>Flow [lpm]</th>
<th>Oper. pressure [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{max}</td>
<td>Q_{pu max}</td>
<td>P_{max}</td>
<td>P, R</td>
<td>A, B</td>
</tr>
<tr>
<td>PSL/PSV 2</td>
<td>3 ... 54</td>
<td>80</td>
<td>420</td>
<td>G 1/2, 3/4-16 UNF-2B</td>
</tr>
<tr>
<td>PSL/PSV 3</td>
<td>3 ... 120</td>
<td>200</td>
<td>420</td>
<td>G 1/2, G 3/4, G 1, 1 1/16-12 UNF-2B</td>
</tr>
<tr>
<td>PSL/PSV 5</td>
<td>16 ... 240</td>
<td>300</td>
<td>400</td>
<td>G 1, G 1 1/4, 1 5/8-12 UN-2B</td>
</tr>
</tbody>
</table>

1) Dep. on actuation and additional functions
Example circuit:

PSL 41/350 - 3
-32 J 25/16 A300 F1/EA
-42 0 80/63 C250/EA
-42 J 63/63 A100 B120 F3/EA
-31 L 40/16/A
- E2 - G24

Type PSL valve bank for constant pump systems
Connection block:
- Coding for thread size (here 4 = G 3/4)
- Coding for pilot pressure-reducing valve (here 1)
- Coding for set pressure at pressure-limiting valve (here 350 bar)
Size: 3

1. Valve section: (exemplary for all subsequent valve sections):
- Directional spool valve block with coding for consumer connection size (here 3 = G 1/2)
- Coding for the type of directional spool valve block (here 2)
- Circuit symbol (here J)
- Coding for max. consumer volumetric flow to ports A and B (here 25 and 16 lpm)
- Coding of additional functions (here A 300; secondary pressure-limiting valve at port A set to 300 bar, function deactivated for port A (here F1))
- Coding for actuation type (here EA)

End plate:
- Coding for end plate (here E2)
- Coding for 24V DC solenoid voltage (here G24)

Products suitable for combination:
- Load-holding valves type LHT, LHDV: Page 204
- Joystick: Proportional pressure-reducing valve type KFB 01 and FB 01: D 6600-01

Additional electrical components:
- Proportional amplifier: Page 278
- Programmable logic valve control type PLVC: Page 280
- CAN node type CAN-ID: Page 282
- Other electronic accessories See "Electronics"

Associated technical data sheets:
- Proportional directional spool valve, type PSL and PSV size 2: D 7700-2
- Proportional directional spool valve, type PSL, PSM and PSV size 3: D 7700-3
- Proportional directional spool valve, type PSL, PSM and PSV size 5: D 7700-5
- Actuation for proportional directional spool valves type PSL/PSV: D 7700 CAN

Associated technical data sheets:
- Connection block type HMPL and HMPV for proportional directional spool valve: D 7700 H
- Proportional directional spool valve type EDL: D 8086
Directional spool valve

2.1 Proportional directional spool valve type PSLF, PSLV and SLF

Proportional directional spool valves are a type of directional valve. They control the direction of movement and the velocity of individual or multiple hydraulic consumers actuated simultaneously. Control is independent of the load and continuous. The proportional directional spool valve type PSLF is suitable for constant pump systems and type PSVF for variable pump systems with a pressure/flow controller. The proportional directional spool valve type PSLF and PSVF is available as an individual manifold mounting valve or in the valve bank. The volumetric flows and load pressures for the individual consumers can be individually adjusted. The directional spool valve can be adapted to different control tasks. Connections on the rear permit easy access to the valve for servicing, even in tight installation spaces. All sizes can be combined with each other. The proportional directional spool valve type PSLF and PSVF is used in mobile hydraulics, in particular in crane and lifting equipment, construction and mining machinery, drilling equipment as well as in offshore and marine technology.

Features and benefits:
- Max. flow 1000 lpm at 420 bar
- Rear side ports for easy access to valves, even in small installation spaces
- Flange design can be combined across all sizes with fast valve replacement
- Simultaneous operation of several functions at full speed

Intended applications:
- Construction machinery and machines for building materials
- Cranes and lifting equipment
- Offshore and marine technology
- Mining machinery

Nomenclature:
- Prop. directional spool valve acc. to the Load-Sensing principle

Design:
- Individual manifold mounting valve
- Valve bank via individual manifold mounting valves

Actuation:
- Manual
- Return spring
- Detent
- Electro-hydraulic
- Pressure
- Hydraulic
- Pneumatic

p_{max}: 400 bar

$Q_{\text{max. consumer}}$: 400 l/min

$Q_{\text{max. valve}}$: approx. 1000 lpm
Design and order coding example

PSLF A1/380/4 - 3 - A2340/40/EA/3 - E2 - G24

Solenoid voltage 12V DC, 24V DC
- Operated using a proportional amplifier or PLVC
- Magnets with different plug versions
- Explosion-proof magnets

End plates

Valve sections with actuation

Size

Connection block
- Various connection threads
- Pressure-limiting valve (pilot-controlled main pressure-limiting valve) in connection block

Basic type
Type PSLF (supply via constant pump),
Type PSVF (supply via variable displacement pump),
size 3, 5 and 7

Function

Connection blocks:

PSLF
2/2-way solenoid valve

Connection block for constant pump systems with integrated 3-way controller, pressure-limiting valve and LS shutdown

PSVF
Connection block for variable pump systems with and without pressure-limiting valve

Additional versions of connection blocks:
- 2/2-way solenoid actuated directional valve for arbitrary idle pump circulation
- Additional damping of the 3-way flow controller or pump controller
- Proportional adjustable pressure limitation

Valve sections:

<table>
<thead>
<tr>
<th>Basic symbol</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
</tbody>
</table>

www.hawe.de | 2016 11-2015-4.4 - Proportional directional spool valve type PSLF, PSLV and SLF 113
Coding for max. consumer flow:

<table>
<thead>
<tr>
<th>Size</th>
<th>Q₀, s</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
</tr>
</tbody>
</table>

- Key figure corresponds to the max. volumetric flow (lpm) at the consumer ports A and/or B of inflow controller versions
- Volumetric flows for A and/or B can be selected individually
- Increasing the control pressure enables 60 lpm (size 2), 120 lpm (size 3), 240 l/min (size 5) and 500 l/min (size 7) per consumer port side.
- Version with 2-way inflow controller and check valve function

Versions of valve sections:
- Load pressure signal outputs at A, B; A and B together
- Version with and without 2-way inflow controller
- Function deactivation
- Secondary pressure-limiting valves (can be individually selected for A and/or B)
- Proportional pressure limitation of individual functions
- Sub-plates with different additional functions
- Sub-plates for ancillary blocks
- Sub-plates for a combination of different sizes
- Combination of various sizes possible in one valve bank
- Version with ATEX solenoid for use in explosive areas
- Version with explosion-proof, intrinsically safe magnets for mining applications

Actuations:

<table>
<thead>
<tr>
<th>Basic type</th>
<th>Brief description</th>
<th>Symbol (example)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Manual actuation</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Detent (stepless)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Electro-hydraulic actuation</td>
<td>For combination of electro-hydraulic and manual actuation</td>
</tr>
<tr>
<td>EA</td>
<td>in combination with manual actuation</td>
<td></td>
</tr>
<tr>
<td>H, P</td>
<td>Hydraulic and pneumatic actuation</td>
<td></td>
</tr>
<tr>
<td>HA, PA</td>
<td>in combination with manual actuation</td>
<td></td>
</tr>
<tr>
<td>HEA</td>
<td>Combination of actuation H, E, and A</td>
<td></td>
</tr>
</tbody>
</table>

End plates:

- End plate (std.)
- With additional Y-port for LS-input signal

Additional versions of end plates:
- End plate with internal drain line (without T-port)
- End plates with an additional port R
- Adapter plate enabling combination of size 5 with size 3 (coding ZPL 53)
General parameters and dimensions

PSVF

![Connection block and valve sections](image)

<table>
<thead>
<tr>
<th>Flow [lpm]</th>
<th>Q<sub>max</sub></th>
<th>Q<sub>PU max</sub></th>
<th>p<sub>max</sub></th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSVF/PSVF 3</td>
<td>3 - 120</td>
<td>200</td>
<td>420</td>
<td>P, R</td>
<td>G 3/4, 1 1/16-12 UN-2B</td>
<td>approx. 195</td>
</tr>
<tr>
<td>PSVF/PSVF 5</td>
<td>16 - 210</td>
<td>350</td>
<td>400</td>
<td>A, B</td>
<td>G 1/2, G 3/4, 7/8-14 UNF-2B</td>
<td>approx. 224</td>
</tr>
<tr>
<td>PSVF/PSVF 7</td>
<td>120 - 500</td>
<td>1000</td>
<td>400</td>
<td>H1</td>
<td>G 1, G 1 1/4, SAE 1 1/2"</td>
<td>approx. 305</td>
</tr>
</tbody>
</table>

1) Per valve section depending on actuation and additional functions
2) Per valve section complete with sub-plate

Products suitable for combination:
- Load-holding valves type LHT, LHDV: Page 204
- Joystick:Proportional pressure-reducing valve type KFB 01 and FB 01: D 6600-01

Additional electrical components:
- Proportional amplifier:Page 278
- Programmable logic valve control type PLVC: Page 280
- CAN node type CAN-IO: Page 282
- Other electronic accessories See "Electronics"

Associated technical data sheets:
- Prop. directional spool valve type PSLF/PSVF: Page 112
Clamping modules combine a directional spool valve, pressure reducing valve and pressure switch.

The clamping module type NSMD has the standard connection pattern nominal size NG 6. It controls force-actuated clamping devices, e.g. hydraulically actuated hollow and solid clamping cylinders for automatic lathes. The device is used to clamp and release a clamping cylinder. It regulates the clamping pressure and monitors it. The clamping pressure is adjusted at the downstream pressure switch using a manual, mechanical or electronically-proportional adjustment device. A special safety circuit monitors the switching position of the valve.

Throttling options in the spool end position and/or rapid and creeping movements are possible as an additional function for one or both consumer ports. The clamping module type NSMD can be combined with other valves as a valve bank type BA to form a valve block.

Features and benefits:
- Directional valve, pressure-reducing valve and pressure switch in one device
- Adjustment of pressure-reducing valve and pressure switch with an adjustment device (manual or electro-proportional)
- The controlled pressure is picked up directly at the consumer port
- Valve with connection pattern according to DIN 24340-A4

Intended applications:
- Machine tools (cutting)
- Machine tools (non-cutting) - forming and cutting
- Handling and mounting technology (industrial robots, etc.)

Nomenclature:
- Valve combination consisting of:
 - Directional spool valve (4/3-, 4/2-way function)
 - Pressure reducing valve with tracked pressure switch

Design:
- Individual valve for manifold mounting (Valve banks with sub-plates type BA are available)

Actuation:
- Solenoid

Function
- With pressure switch
- Rapid and creeping movement (one or both directions)

Solenoid voltage
- 12V DC, 24V DC, 110V AC, 230V AC
- Solenoids with various plug versions

Means of adjustment for the clamping pressure
- Slotted head screw + hexagon nut
- Wing screw + wing nut
- Lockable turning handle
- Electro-proportional adjustment with/without additional function monitoring

Additional functions
- Throttle
- Rapid and creeping movement (one or both directions)
- With orifice (flow limitation in accumulator mode)

Basic type, size
- Type NSMD size 2 with connection hole pattern conf. NG 6
Function

Basic symbols

<table>
<thead>
<tr>
<th>Symbols</th>
<th>D, E, G, D1, E1, G1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
</tr>
<tr>
<td>E1</td>
<td>E1</td>
</tr>
<tr>
<td>G1</td>
<td>G1</td>
</tr>
<tr>
<td>B, W, K</td>
<td>B1, W1, K1</td>
</tr>
<tr>
<td>B1</td>
<td>B1</td>
</tr>
<tr>
<td>W1</td>
<td>W1</td>
</tr>
<tr>
<td>K1</td>
<td>K1</td>
</tr>
</tbody>
</table>

Further functions:

G1/MD
- Pressure reducing function and throttle in switching positions a and b

G/MM6
- Rapid traverse and creeping in both directions

G/MMDA7
- Rapid traverse and creeping in one direction featuring also a limitation for rapid traverse (switching position a, c)
- Rapid traverse in opposing direction (switching position b)

G/MMA7
- Switching position a, speed limitation is possible by means of a throttle with pressure reduction and pressure monitoring

- Switching position with fixed rapid traverse speed without pressure reduction and pressure monitoring.
General parameters and dimensions

NSMD2 K...

![Diagram of NSMD2 K...]

NSMD2 G...

![Diagram of NSMD2 G...]

<table>
<thead>
<tr>
<th></th>
<th>Q_{max} [lpm]</th>
<th>p_{max} [bar]</th>
<th>Clamping pressure range [bar]</th>
<th>Trigger flow [lpm]</th>
<th>Connection hole pattern1</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
<th>Individual valve2</th>
<th>Additional function</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSMD2</td>
<td>25</td>
<td>120</td>
<td>5 ... 50 8 ... 80</td>
<td>2 ... 4 3 ... 5 4 ... 6</td>
<td>Hole pattern conf. DIN 24340-A6</td>
<td>see illustration</td>
<td>2.2 ... 3.8</td>
<td>+ 0.6 ... 1.1</td>
<td></td>
</tr>
</tbody>
</table>

1) Mx port: G 1/8
2) Depending on circuit symbol and actuation type
Clamping module type NSMD size 2 with industrial standard (DIN 24340-A6) connection hole pattern, flow pattern symbol K, detented version, clamping pressure range G, 5-50 bar and min. operational flow 2-4 lpm. The actuation for the adjustment of the clamping pressure and tracked pressure switch takes place by means of wing screw and wing nut. An orifice ϕ 2.5 mm is installed in the P gallery, solenoid voltage 24V DC

Clamping module type NSMD size 2 with industrial standard connection hole pattern conf. DIN 24340-A6, flow pattern symbol G1 with pressure monitoring at port A, adjustable throttle setting for switching position a and b. Valve for clamping pressure range E, 8-80 bar and min. operational flow 4-6 lpm. The actuation for the adjustment of the clamping pressure and tracked pressure switch takes place with self-locking turn knob. An orifice ϕ 1 mm is installed in the P gallery, solenoid voltage 12V DC

Circuit example:

HK 43L/1M-Z 9,8-AL 21F2-F60/70-2-BA 2
- NSMD2K/M/GDK/B2,5/0
- NSMD2D/MMDA7/GDK/B2/0-G24

Associated technical data sheets:
- Clamping module type NSMD: D 7787

Products:
- Directional valves type NSWP2: Page 88
- Directional seated valves type NBVP16: Page 144

Plates:
- Valve banks type BA2: Page 70
- Intermediate plate type NZP: D 7788 Z

Male connectors:
- Line connector type MSD and others: D 7163
- With economy circuit: D 7813, D 7833
Directional seated valves

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directional seated valve type G, WG and others</td>
<td>124</td>
</tr>
<tr>
<td>Valve bank (directional seated valve) type VB</td>
<td>130</td>
</tr>
<tr>
<td>Directional seated valve type WN and WH</td>
<td>134</td>
</tr>
<tr>
<td>Valve bank (directional seated valve) type BWN and BWH</td>
<td>136</td>
</tr>
<tr>
<td>Directional seated valve type EM and EMP</td>
<td>140</td>
</tr>
<tr>
<td>Directional seated valve type BVG, BVP and NBVP</td>
<td>144</td>
</tr>
<tr>
<td>Directional seated valve type BVE</td>
<td>148</td>
</tr>
<tr>
<td>Directional seated valve type VP</td>
<td>150</td>
</tr>
<tr>
<td>Lifting/lowering valve type HSV</td>
<td>152</td>
</tr>
<tr>
<td>Switch unit type CR</td>
<td>154</td>
</tr>
<tr>
<td>Lifting module type HMT and HST</td>
<td>156</td>
</tr>
<tr>
<td>Directional seated valve type VH, VHR, and VHP</td>
<td>160</td>
</tr>
<tr>
<td>Directional seated valve type VZP</td>
<td>162</td>
</tr>
</tbody>
</table>
Solenoid-actuated seated valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>Actuation</th>
<th>p_{max} (bar)</th>
<th>q_{max} (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G, WG and Others</td>
<td>Directional seated valve with various actuations</td>
<td>- Solenoid</td>
<td>0: 500</td>
<td>0: 6</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for manifold mounting</td>
<td>- Pressure</td>
<td>1: 700</td>
<td>1: 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Manual</td>
<td>2: 700</td>
<td>2: 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3: 400</td>
<td>3: 65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4: 350</td>
<td>4: 120</td>
</tr>
<tr>
<td>VB</td>
<td>Directional seated valve, zero leakage, valve bank</td>
<td>- Solenoid</td>
<td>01: 500</td>
<td>01: 6</td>
</tr>
<tr>
<td></td>
<td>• For pipe connection</td>
<td>- Pressure</td>
<td>11: 700</td>
<td>11: 12</td>
</tr>
<tr>
<td></td>
<td>• For combination with hydraulic power packs</td>
<td>- Manual</td>
<td>21: 700</td>
<td>21: 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31: 400</td>
<td>31: 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41: 350</td>
<td>41: 120</td>
</tr>
<tr>
<td>WN, WH</td>
<td>Directional seated valve, zero leakage, individual valve</td>
<td>- Solenoid</td>
<td>WN - 1: 350</td>
<td>WN - 1: 5</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for manifold mounting</td>
<td></td>
<td>WH - 1: 450</td>
<td>WH - 1: 8</td>
</tr>
<tr>
<td></td>
<td>• Combination with connection block for pipe connection</td>
<td></td>
<td>WH - 2: 350</td>
<td>WH - 2: 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WH - 3: 350</td>
<td>WH - 3: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WH - 4: 350</td>
<td>WH - 4: 60</td>
</tr>
<tr>
<td>BWH, BWN</td>
<td>Directional seated valve, zero leakage, valve bank</td>
<td>- Solenoid</td>
<td>BWN - 1: 350</td>
<td>BWN - 1: 5</td>
</tr>
<tr>
<td></td>
<td>• For pipe connection</td>
<td></td>
<td>BWH - 1: 450</td>
<td>BWH - 1: 8</td>
</tr>
<tr>
<td></td>
<td>• For combination with hydraulic power packs</td>
<td></td>
<td>BWH - 2: 350</td>
<td>BWH - 2: 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BWH - 3: 350</td>
<td>BWH - 3: 30</td>
</tr>
<tr>
<td>VZP</td>
<td>Directional seated valve, zero leakage, individual valve</td>
<td>- Solenoid</td>
<td>1: 450</td>
<td>1: 15</td>
</tr>
<tr>
<td>EM, EMP</td>
<td>Directional seated valve, zero leakage, individual valve</td>
<td>- Solenoid</td>
<td>EM - 1: 450</td>
<td>EM - 1: 20</td>
</tr>
<tr>
<td></td>
<td>• Screw-in valve</td>
<td></td>
<td>EM - 2: 400</td>
<td>EM - 2: 40</td>
</tr>
<tr>
<td></td>
<td>• Combination with connection block for pipe connection</td>
<td></td>
<td>EM - 3: 400</td>
<td>EM - 3: 80</td>
</tr>
<tr>
<td></td>
<td>• Combination with connection block for swivel fitting</td>
<td></td>
<td>EM - 4: 350</td>
<td>EM - 4: 160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EMP - 2: 400</td>
<td>EMP - 2: 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EMP - 3: 400</td>
<td>EMP - 3: 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EMP - 4: 350</td>
<td>EMP - 4: 160</td>
</tr>
<tr>
<td>BVG, BVP, NBVP</td>
<td>Directional seated valve, zero leakage, individual valve</td>
<td>- Solenoid</td>
<td>1: 400</td>
<td>1: 20</td>
</tr>
<tr>
<td></td>
<td>• For pipe connection</td>
<td>- Hydraulic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Individual valve for manifold mounting</td>
<td>- Pneumatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BVE</td>
<td>Directional seated valve, zero leakage, individual valve</td>
<td>- Solenoid</td>
<td>1: 500</td>
<td>1: 20</td>
</tr>
<tr>
<td></td>
<td>• Screw-in valve</td>
<td></td>
<td>3: 400</td>
<td>3: 70</td>
</tr>
<tr>
<td></td>
<td>• Combination with connection block for pipe connection</td>
<td></td>
<td>5: 400</td>
<td>5: 300</td>
</tr>
<tr>
<td></td>
<td>• Combination with connection block for manifold mounting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Nomenclature/Design</td>
<td>Actuation</td>
<td>p_{max} (bar)</td>
<td>Q_{max} (lpm)</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>VP</td>
<td>Directional seated valve, zero leakage, individual valve
• Individual valve for manifold mounting</td>
<td>- Solenoid
- Hydraulic
- Pneumatic</td>
<td>1: 400</td>
<td>1: 15</td>
</tr>
<tr>
<td>VH, VHR, VHP</td>
<td>Directional seated valve, zero leakage
• Individual valve for pipe connection
• Single manifold mounting valve
• Valve bank</td>
<td>- Manual
VH - 1: 700
VH - 2: 500
VHP - 1: 700
VHR - 1: 700
VHR - 2: 500</td>
<td>VH - 1: 12
VH - 2: 25
VHP - 1: 12
VHR - 1: 12
VHR - 2: 25</td>
<td></td>
</tr>
</tbody>
</table>
Valve Combinations

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>Actuation</th>
<th>p_{max} (bar)</th>
<th>q_{max} (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HMT - 3: 315</td>
<td>HMT - 3: 90</td>
</tr>
</tbody>
</table>
2.2 Directional seated valve type G, WG and others

Directional seated valves are a type of directional valve. As ball valves they have zero leakage in the closed state. The directional seated valve type G, WG, H, P, K, T and D is available as a 2/2, 3/2, 4/2, 3/3 and 4/3 directional seated valve with different actuation types. Actuation using a hand lever enables switchable pressures of up to 700 bar. Appropriate connection blocks make possible direct pipe connection. The directional seated valves are available as a combination of valves in a valve bank type VB.

Features and benefits:
- Zero-leakage ball valve construction with high switching reliability
- Solenoid, pressure, mechanical or manual actuation
- Low shifting forces and gentle, smooth switching
- Operating pressures up to 700 bar

Intended applications:
- Machine tools (cutting and non-cutting)
- Clamping equipment, punching tools, jigs
- Rubber and plastics machinery
- Oil hydraulics and pneumatics

<table>
<thead>
<tr>
<th>Nomenclature:</th>
<th>Directional seated valve, zero leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design:</td>
<td>Individual valve, manifold mounting combination with sub-plates for pipe connection</td>
</tr>
</tbody>
</table>
| Actuation: | Solenoid
Pressure (hydraulic, pneumatic)
Mechanical (roller, pin)
Manual (hand lever, adjusting knob) |
| p_{max}: | 350 ... 700 bar |
| q_{max}: | 6 ... 120 lpm |
Design and order coding example

<table>
<thead>
<tr>
<th>G</th>
<th>R2</th>
<th>-3</th>
<th>R</th>
<th>-1/2</th>
<th>-G24</th>
</tr>
</thead>
</table>

Solenoid voltage
12V DC, 24V DC, 110V AC, 230V AC

Indiv. connection blocks for pipe connection

Additional versions:
- Connection blocks with by-pass check valve or pressure limiting valve between P and R
- Connection block with bridge rectifier circuit. Check valves in "GRAETZ"-circuitry ensure flow direction through the valve

Additional elements
- With check valve insert for port P
- With check valve insert for port P
- With return pressure stop for port R
- Position monitoring (size 3 and 4)

Size
- Size 0 to 4
 - Size 1 also available with industrial connection hole pattern NG 6 (CETOP), type NG

Function
- 2/2-way directional valve (R2, S2)
- 3/2-way directional valve (3, Z3)
- 3/3-way directional valve (21, 39)
- 4/3-way directional valve (22, 48, 49)
- 4/2-way directional valve (4, Z4)

Actuation
- Solenoid (G, WG)
- Hydraulic (H)
- Pneumatic (P)
- Mechanical (K, T, F, D)
Function

<table>
<thead>
<tr>
<th>2/2-way directional valve</th>
<th>3/2-way directional valve</th>
<th>3/3-way directional valve</th>
<th>4/3-way directional valve</th>
<th>4/2-way directional valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>S2</td>
<td>3</td>
<td>Z3</td>
<td>21, 39</td>
</tr>
</tbody>
</table>

- Simplified symbols for 3/3-, 4/3- and 4/2-way functions
- Type 21, 22 not in size 4
- Type 39, 48, 49 only in size 22
- Type 4, Z4 only in size 1
Actuation:

<table>
<thead>
<tr>
<th>Solenoid</th>
<th>Pressure</th>
<th>Mechanical</th>
<th>Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Hydraulic</td>
<td>Roller</td>
<td>Hand lever</td>
</tr>
<tr>
<td></td>
<td>Pneumatic</td>
<td>Pin</td>
<td>Turn knob</td>
</tr>
<tr>
<td>WG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | | |

- **Solenoid voltages:** 12V DC, 24V DC (type G) 230V AC (type WG)

| | | | |

| | | | |

- **Control pressure** $p_{\text{cont. max}}$ [bar]:
- **Control pressure** $p_{\text{cont. min}}$ [bar]:

| | | | |

| | | | |

| | | | |

- **Shifting force** [N]:
- **Shifting travel** [mm]:
- **Shifting torque** [Ncm]:

| | | | |

| | | | |

- **Valve with solenoid actuation also available in ATEX-compliant version (24V DC)**
General parameters and dimensions

Individual valve

<table>
<thead>
<tr>
<th>Size</th>
<th>(H_{\text{max}})</th>
<th>(H_{1\text{max}})</th>
<th>B</th>
<th>(T_{\text{max}})</th>
<th>(T_{1})</th>
<th>(m_{\text{max}}) [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90.5</td>
<td>110.5</td>
<td>36</td>
<td>75</td>
<td>41.5</td>
<td>40.0</td>
</tr>
<tr>
<td>1, 12</td>
<td>115</td>
<td>145</td>
<td>45</td>
<td>92</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2, 22</td>
<td>126.5; 134.5</td>
<td>156.5; 161.5</td>
<td>56; 56</td>
<td>116; 116</td>
<td>62.5; 67.5</td>
<td>56; 56</td>
</tr>
<tr>
<td>3</td>
<td>162</td>
<td>202</td>
<td>70</td>
<td>144</td>
<td>91.5</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>226</td>
<td>226</td>
<td>80</td>
<td>162</td>
<td>127</td>
<td>125</td>
</tr>
</tbody>
</table>

Valve with connection block

<table>
<thead>
<tr>
<th>Size</th>
<th>(Q_{\text{max}}) [lpm]</th>
<th>(P_{\text{max}}) [bar]</th>
<th>G</th>
<th>WG</th>
<th>H</th>
<th>P</th>
<th>K</th>
<th>T</th>
<th>F</th>
<th>D</th>
<th>P, R, A, B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>300... 500</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>G 1/4</td>
</tr>
<tr>
<td>1, 12</td>
<td>12</td>
<td>350... 500 (700)</td>
<td>500... 700</td>
<td>400... 700</td>
<td>400... 700</td>
<td>G 1/4 and G 3/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 22</td>
<td>25</td>
<td>350... 500 (700)</td>
<td>500</td>
<td>400... 500</td>
<td>400... 500</td>
<td>G 3/8 and G 1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>350... 400</td>
<td>400</td>
<td>350</td>
<td>-</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>G 1/2 and G 3/4</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>G 3/4 and G 1</td>
</tr>
</tbody>
</table>
Example circuit:

RZ 4.0/2-12.3-B 75-V 5.5
- 3 x 690/400 V 50 Hz

VB 22 AM 1/500
-G 49/U 22
-8 E-2-G 24

GR 2-12-3/8 C-G 24

Associated technical data sheets:
- Directional seated valve type G, WG and others: D 7300
- Directional seated valve type NG, NGW and others: D 7300 N
- Directional seated valve type G, WG and others with position monitoring: D 7300 H

Valve banks:
- Valve banks type VB: Page 130

Male connectors:
- Line connector type MSD and others: D 7163
- With economy circuit: D 7813, D 7833
Directional seated valves

2.2 Valve bank (directional seated valve) type VB

A valve bank combines different valves for operating independent consumers. The valve bank type VB comprises several directional seated valves of type G, WG among others that are connected in parallel. The directional seated valves as ball valves have zero leakage in the closed state. They are attached to sub-plates. These sub-plates are clamped between the inlet section (P and R port) and the end plate via tension rods. Pressure switches or pressure-limiting valves can be integrated into the pumps and/or consumer lines.

2/2 and 3/2, 4/2, 3/3 and 4/3 directional seated valves are available with different types of actuation. The valve bank can be attached directly to the compact hydraulic power pack.

Features and benefits:
- Compact hydraulic controls for high pressure
- Combination with compact hydraulic power packs result in cost efficient turn-key solutions
- Elimination of time-consuming installation due to integrated hydraulic power packs
- Simple repairs thanks to modular structure of the systems

Intended applications:
- Machine tools (chipping and non-chipping)
- Clamping, punching and jigs
- Rubber and plastics machinery
- Oil hydraulics and pneumatics

Design and order coding example

<table>
<thead>
<tr>
<th>VB12</th>
<th>F</th>
<th>M</th>
<th>DCNR5</th>
<th>1</th>
<th>WG230</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Solenoid voltage**: 12V DC, 24V DC, 110V AC, 230V AC
- **Port size**: G 1/4 (1), G 3/8 (2), G 1/2 (3) (BSPP)

Valve sections
- Symbols: 2/2-way directional valve, 3/2-way directional valve, 3/3-way directional valve, 4/3-way directional valve, 4/2-way directional valve

Valve section options
- Pressure switch for P or the consumer side
- Pressure reducing valve reducing the pressure in the downstream gallery P
- Orifices in gallery P and/or return pressure stop in gallery R

Sub-plates
- With 2-way flow controller by-passing to the tank
- Pressure reducing valve reducing the pressure in the downstream gallery P
- With pressure limiting valve and throttle
- With idle circulation valve and/or shuttle valve

Intermediate plates
- With pressure reduction for gallery P or throttle for port A (parallel connection)

Actuation

Connection block/adapter plate
- For pipe connection
- For direct mounting at compact hydraulic power packs
- For direct mounting at hydraulic power packs

Basic type, size
- Type VB, size 01, 12, 21, 31, 41

<table>
<thead>
<tr>
<th>Nomenclature:</th>
<th>Directional seated valve, zero leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design:</td>
<td>Valve bank for pipe connection</td>
</tr>
<tr>
<td>Actuation:</td>
<td>Solenoid Pressure: Hydraulic, Pneumatic Manual: Hand lever, Turn knob</td>
</tr>
<tr>
<td>(p_{\text{max}}):</td>
<td>500 ... 700 bar</td>
</tr>
<tr>
<td>(Q_{\text{max}}):</td>
<td>6 ... 120 lpm</td>
</tr>
</tbody>
</table>
Function

Connection blocks:

A .-1/..

For pipe connection, with fixed pressure limiting valve (/..- pressure specification in bar)

C, D, E

For mounting onto hydraulic power packs type R, Z and RZ, depending on tank and size

F

For mounting onto compact hydraulic power packs (type KA, HC, MP, MPN, HK)

G

Valve sections:

A

D

F

B

C

E

Q

P

O

- A not for VB 01, VB 11 only with tapped ports G 1/4

H

L

N

R

Y

I

S

T

Simplified flow pattern

J, G39

G , G49

HX

LX

NX

RX

Simplified flow pattern

- J, I, Y, S, T, G39, G49 only available for VB 21, 22
- G not available for VB 41
- HX, LX, NX, RX only available for VB 11

End plates:

/2

/3 ... /65

/2, /3 ... /65 only available for VB01 and VB11
General parameters and dimensions

VB 01

<table>
<thead>
<tr>
<th>Q_{max} [lpm]</th>
<th>p_{max} [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg] per valve section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Solenoid</td>
<td>Pressure</td>
<td>Manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>H</td>
<td>P</td>
</tr>
<tr>
<td>VB 01</td>
<td>6</td>
<td>300 ... 500</td>
<td>-</td>
<td>500</td>
</tr>
<tr>
<td>VB 12</td>
<td>12</td>
<td>350 ... 500 (700)</td>
<td>500 ... 700</td>
<td>400 ... 700</td>
</tr>
<tr>
<td>VB 21</td>
<td>25</td>
<td>350 ... 500 (700)</td>
<td>500</td>
<td>400 ... 500</td>
</tr>
<tr>
<td>VB 22</td>
<td></td>
<td>350 ... 500 (700)</td>
<td>500</td>
<td>-</td>
</tr>
<tr>
<td>VB 31</td>
<td>65</td>
<td>350 ... 400</td>
<td>400</td>
<td>-</td>
</tr>
<tr>
<td>VB 41</td>
<td>120</td>
<td>350</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Connection block

Valve sections

Pressure switches

End plate (here with pressure switches)
Circuit example:
MP24A - H1,39/B5 - A1/300
Compact hydraulic power pack type MP size 2, connection block with pressure limiting valve (tool adjustable)

Valve bank type VB size 0 with 3 valves (actuation mode M (solenoid), solenoid voltage 230V 50/60 Hz) and end plate. Here 32 with pressure switch and drain valve

Parameters of the circuit example:
- $Q_{pu} = \text{approx. } 1.39 \text{ lpm (at 1450 rpm)}$
- $p_{max} = 400 \text{ bar}$
- $p_{system} = 300 \text{ bar (set pressure of the pressure-limiting valve)}$
- Tank $V_{usable} = \text{approx. } 6 \text{ l}, V_{total} = \text{approx. } 7.7 \text{ l}$

Suites compact hydraulic power packs:
- Type MP, MPN, MPNW, MPW: Page 54
- Type HC, HCW, HCG: Page 46
- Type HK, HKF, HKL: Page 58
- Type NPC: Page 44
- Type KA, KAW: Page 50
- Connection blocks type A: Page 68

Suites hydraulic power packs:
- Type R: Page 62
- Type RZ: Page 12

Corresponding pamphlets (data sheets):
- Valve bank (directional seated valve) type VB: D 7302

Suited valves:
- Directional seated valves with various actuation types: Page 124

Accessories:
- Pressure switches type DG 3.., DG 5 E: Page 270
- Pressure reducing valves type CDK: Page 186

Male connectors:
- Line connector type MSD and others: D 7163
- Economy circuit type MSD: D 7813, D 7833
Directional seated valves

2.2 Directional seated valve type WN and WH

Directional seated valves are a type of directional valve. As ball valves they have zero leakage in the closed state.

The directional seated valves type WN and WH are valves for manifold mounting. 2/2 and 3/2 directional seated valves are available. These are also available combined as 3/3 and 4/3 directional seated valves. The type WH contains internal pressure relief. As a result the permissible operating pressure is higher than the type WN.

Appropriate connection blocks make possible direct pipe connection. The directional seated valves are available as a combination of valves in a valve bank type BWN and BWH.

Features and benefits:
- Excellent price/performance ratio
- Compact design
- Directional seated valves with zero leakage
- Solenoid version with 8-watt technology

Intended applications:
- Machines for forestry and agricultural purposes
- Clamping, punching and jigs
- Clamping equipment, punching tools, jigs
- Process engineering systems

Design and order coding example

<table>
<thead>
<tr>
<th>WN1</th>
<th>H</th>
<th>1</th>
<th>- 1/4</th>
<th>- G24</th>
</tr>
</thead>
</table>

- **Solenoid voltage**: 12V DC, 24V DC, 110V AC, 230V AC
- **Single connection block**: Port size G 1/4, G 3/8, G 1/2 (BSPP)
- **By-pass check valve or pressure limiting valve between P and R**
- **Versions with M12-plug and 8-Watt solenoid**

Additional elements:
- Return pressure stop for port R
- Check valve insert for port P
- Pressure limiting valve

Function:
- 2/2-way directional valve (F, D, Q, E)
- 3/2-way directional valve (H, R, M, N)
- 3/3-way directional valve (J, U)
- 4/2-way directional valve (W)

Basic type, size:
- Type WN, size 1
- Type WH, size 1 to 4

Nomenclature:
- Directional seated valve, zero leakage

Design:
- Individual valve, manifold mounting combination with connection blocks for pipe connection

Actuation:
- Solenoid

P_{max}: 350 ... 450 bar

Q_{max}: 5 ... 60 lpm
Function

- Symbols show type WH
 View type WH
- Type WN 1 without de-pressuring duct for the solenoid (add. leakage duct is not necessary)
 Type WN1 without solenoid relief (no leakage line)

General parameters and dimensions

Individually valve

<table>
<thead>
<tr>
<th>Function</th>
<th>Qmax [lpm]</th>
<th>pmax [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions (individual valve)</th>
<th>mmax [kg]</th>
<th>Dimensions (with sub-plate)</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>B</td>
<td>T</td>
<td>H1</td>
</tr>
<tr>
<td>WN 1</td>
<td>5</td>
<td>320 ... 350</td>
<td>G 1/4</td>
<td>87</td>
<td>35</td>
<td>35</td>
<td>0.6</td>
</tr>
<tr>
<td>WH 1</td>
<td>8</td>
<td>450</td>
<td>G 1/4</td>
<td>87</td>
<td>35</td>
<td>35</td>
<td>0.6</td>
</tr>
<tr>
<td>WH 2</td>
<td>15</td>
<td>350</td>
<td>G 1/4</td>
<td>95.2 ... 101.7</td>
<td>35</td>
<td>35</td>
<td>0.65 ... 0.7</td>
</tr>
<tr>
<td>WH 3</td>
<td>30</td>
<td>350</td>
<td>G 3/8</td>
<td>93.5 ... 103.5</td>
<td>45</td>
<td>45</td>
<td>1.2 ... 1.3</td>
</tr>
<tr>
<td>WH 4</td>
<td>60</td>
<td>350</td>
<td>G 1/2</td>
<td>118 ... 133</td>
<td>60</td>
<td>60</td>
<td>2.7 ... 3.0</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Stationary seated valve type WN and WH: D 7470 A/1

Valve banks:
- Type BWN1, BWH: Page 136

Male connectors:
- Line connector type MSD and others: D 7163
- With economy circuit: D 7813, Economy circuit type MSD 4 P55: D 7833

www.hawe.de | 2016
11-2015-4.4 - Directional seated valve type WN and WH
135
Directional seated valves

2.2 Valve bank (directional seated valve) type BWN and BWH

A valve bank combines different valves for operating independent consumers. The valve bank type BWN or BWH comprises several directional seated valves of type WN or WH that are connected in parallel. The directional seated valves as ball valves have zero leakage in the closed state. They are attached to sub-plates. These sub-plates are clamped between the inlet section (P and R port) and the end plate via tension rods. Pressure switches or pressure-limiting valves can be integrated into the pumps and/or consumer lines.

2/2 and 3/2- directional seated valves. Combined these are also available as 3/3 and 4/3 directional seated valves. The valve bank can be attached directly to the compact hydraulic power pack.

Features and benefits:
- Modular concept
- Adapter plates for flange-mounting on hydraulic power packs or combination with other valve types
- With the valve bank version, option to incorporate additional functions in the sub-plate, such as pressure-limiting valves, pressure switches etc.
- Energy-efficient solutions in connection with hydraulic accumulators

Intended applications:
- Machine tools (chipping and non-chipping)
- Rubber and plastic machinery
- Mining machinery (incl. oil production)
- Rubber and plastics machinery

Nomenclature:
- Directional seated valve, zero leakage

Design:
- Valve bank
 - For pipe connection
 - Combination with hydraulic power packs

Actuation:
- Solenoid

P_{max}:
- 350 ... 450 bar

Q_{max}:
- 5 ... 30 l/min
Design and order coding example

<table>
<thead>
<tr>
<th>BWH2</th>
<th>A-1/300</th>
<th>- FH5N5</th>
<th>- 1</th>
<th>- 1</th>
<th>- G24</th>
</tr>
</thead>
</table>

Solenoid voltage 12V DC, 24V DC, 110V AC, 230V AC
- Versions with M12-plug and 8-Watt solenoid

Port size G 1/4, G 3/8 (BSPS)

End plate
- With one or two pressure switches
- With accumulator drain valve
- With additional pressure limiting valve in gallery P

Valve sections
- Directional valves type WH or WN
- Valve section options:
 - Return pressure stop
 - Pressure switch for the consumer ports or for gallery P
 - Pressure limiting valves at the consumer port
 - Pressure reducing valve reducing the pressure in the downstream P gallery
- Additional sections:
 - Pressure reducing valve
 - Indiv. sub-plate with pressure switch
 - Separation plate for gallery P

Connection block/adapter plates
- For pipe connection, with/without pressure limiting valve, manually or fixed, with/without prop. pressure limiting valve
- For direct mounting at compact hydraulic power packs
- For direct mounting at hydraulic power packs
- Adapter plates for combination with directional valves type BVZP or SWR/SWP

Basic type, size
Type BWN, size 1 and type BWH, size 1 to 3
Function

Connection blocks/adapter plates:

A-1/...

For pipe connection, with fixed pressure-limiting valve (/... pressure specification in bar)

For mounting onto hydraulic power packs

For mounting on compact hydraulic power packs with connection block (type KA, HC, MP, MPN and HK)

Valve sections:

D F B O H N M R K

Additional options for the valve sections:

- Pressure switches in the consumer or pump channel. The pressure switches (type DG 3..) are directly flange-mounted to the sub-plate.
- Pressure-limiting valves in the consumer channel (for 3/2- or 3/3-way directional valves, for size 1). The pressure-limiting valve is directly incorporated in the sub-plate.
- Pressure-reducing valves for pressure reduction in the subsequent pump channel.

End plates:

1 2 3../3..

Standard end plate End plate with accumulator drain valve End plate with one or two pressure switches connected to the P gallery
General parameters and dimensions

BWH

For pipe connection:

![Diagram of valve sections, connection block, end plate, and pressure switch]

<table>
<thead>
<tr>
<th></th>
<th>Q_{max} [lpm]</th>
<th>p_{max} [bar]</th>
<th>Ports P, R, A, B (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>BWN 1</td>
<td>5</td>
<td>350</td>
<td>G 1/4</td>
<td>116.5 ... 131.5</td>
<td>38</td>
</tr>
<tr>
<td>BWH 1</td>
<td>8</td>
<td>450</td>
<td>G 1/4</td>
<td>116.5 ... 131.5</td>
<td>38</td>
</tr>
<tr>
<td>BWH 2</td>
<td>15</td>
<td>350</td>
<td>G 1/4</td>
<td>122 ... 157.5</td>
<td>38</td>
</tr>
<tr>
<td>BWH 3</td>
<td>30</td>
<td>350</td>
<td>G 3/8</td>
<td>155.5 ... 168</td>
<td>50</td>
</tr>
</tbody>
</table>

*Weight m [kg] per individual element: + 0.3 kg per pressure switch fitted

Associated publications:
- Valve bank (directional seated valve) type BWN and BWH: D 7470 B/1
- Ional seated valve type WN and WH: D 7470 A/1

Connection block:
- Type A: Page 68

Compact hydraulic power packs:
- Type HC, HCW, HCG: Page 46
- Type HK, HKF, HKL: Page 58

Hydraulic power packs:
- Type NPC: Page 44
- Type KA, KAW: Page 50

Hydraulic accessories:
- Pressure switches type DG 3..., DG 5E: Page 270
- Pressure reducing valves type CDK: Page 186

www.hawe.de | 2016
11-2015-4.4 - Valve bank (directional seated valve) type BWN and BWH
139
Directional seated valves

2.2 Directional seated valve type EM and EMP

Directional seated valves are a type of directional valve. As cone valves they are tightly sealed without leakage in the closed state.

The directional seated valves type EM and EMP are screw-in valves. 2/2-way directional seated valves with direct or pilot-controlled electromagnetic actuation are available. The directional seated valve type EM is available as a directional. Type EMP is a proportionally switching directional seated valve.

Appropriate connection blocks make possible direct pipe connection or manifold mounting. You can obtain additional components, e.g. a drain valve, bypass throttle valve, pressure switch or flow control valve.

Features and benefits:
- Zero leakage in blocked state
- Directly switching up to approx. 3 lpm and piloted up to 160 lpm
- Minimized flow resistance even at high flow rate
- Long lifetime due to hardened valve seats

Intended applications:
- Cranes and lifting equipment
- Road construction industry
- Materials handling, industrial trucks etc.
- Handling and assembly robots, etc.

Nomenclature: Directional seated valve, zero leakage
Design: Screw-in valve Combination
Actuation: Solenoid
p_{max}: 450 bar
q_{max}: 1 ... 160 lpm

Design and order coding example

<table>
<thead>
<tr>
<th>EM 21</th>
<th>V</th>
<th>- 3/8</th>
<th>- G24</th>
</tr>
</thead>
</table>

Solenoid voltage 12V DC, 24V DC, 110V AC, 230V AC

Versions with
- Versions with M12-plug and 8-Watt solenoid
- Quarter-turn plug, plugs of Co. KOSTAL or AMP

Connection blocks

Versions with
- Drain valve
- Drain valve and drop-rate braking valve
- Drain valve and by-pass check valve
- Bypass throttle
- Pressure switch
- 2-way flow controller

Function
- V - 2/2-way valve (NC-type)
- S - 2/2-way valve (NO-type)

Basic type, size
- Type EM: Directional valve, size 1 to 4
- Type EMP: Prop. valve, size 1 to 4
Function

<table>
<thead>
<tr>
<th>Flow in arrowed direction</th>
<th>Arbitrary flow direction</th>
<th>Flow in arrowed direction</th>
<th>Arbitrary flow direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directly actuated</td>
<td></td>
<td>Energized open</td>
<td>Energized closed</td>
</tr>
<tr>
<td>EM .1 D</td>
<td></td>
<td>EM .1 DS</td>
<td></td>
</tr>
<tr>
<td>Pilot actuated</td>
<td>EM .1 V</td>
<td>EM .2 V</td>
<td>EM .1 S</td>
</tr>
<tr>
<td>EMP .1 V</td>
<td>EM .2 V</td>
<td>EMP .1 S</td>
<td>EM .2 S</td>
</tr>
</tbody>
</table>

Example circuit:

HMPL 5 US 1/PVPV/250-3
- A2 L 25/25/E1/3 BL 5 D7/120
- 32 L 25/25 C160/E1
- 32 L 63/63 C220/E1
- E4 - AMP 12 K4
General parameters and dimensions

Screw-in valve

Valve compl. with connection block for pipe connection

<table>
<thead>
<tr>
<th></th>
<th>Screw-in valve</th>
<th>Valve with connection block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q<sub>max</sub> [lpm]</td>
<td>p<sub>max</sub> [bar]</td>
<td>G</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>EM 11 (D, DS)</td>
<td>5</td>
<td>450</td>
</tr>
<tr>
<td>EM 21 (D, DS)</td>
<td>3</td>
<td>400</td>
</tr>
<tr>
<td>EM 1.. (V, S)</td>
<td>20</td>
<td>450</td>
</tr>
<tr>
<td>EM/EMP 2.. (V, S)</td>
<td>40</td>
<td>400</td>
</tr>
<tr>
<td>EM/EMP 3.. (V, S)</td>
<td>80</td>
<td>400</td>
</tr>
<tr>
<td>EM/EMP 4.. (V, S)</td>
<td>160</td>
<td>400</td>
</tr>
</tbody>
</table>

- Pressure above 300 bar only with manifolds made of steel. Pay attention to the possibly reduced rigidity of the thread with other materials (e.g. cast, aluminium).
Example circuit:
KA 442 LFK/HH 13.1/13.1
- SS-A 1 F 3/200
- BA 2
- NBVP 16 G/R-GM/NZP 16 TSPG/TB 0/3
- NBVP 16 G/R-GM/3
- 2-G 24
- X 84 G-9/250
- 3 x 400/230 V 50 Hz-4.0 kW/24V DC

Suitable products:
- Intermediate plates NG 6 type NZP: D 7788 Z
- Connection blocks types HMPL and HMPV: Page 106
- Lifting/lowering valves type HSV: Page 152
- Lifting modules type HST, HMT, etc.: Page 156

Associated technical data sheets:
- Directional seated valves type EM, EMP: D 7490/1, D 7490/1 E

Accessories:
- Pressure switches type DG 3.., DG 5E: Page 270
- Drop-rate braking valves type SB, SQ, SJ: Page 216
- Suitable proportional amplifier: Page 278

Male connectors:
- Line connector type MSD and others: D 7163
- With economy circuit: D 7813, D 7833
Directional seated valves

2.2 Directional seated valve type BVG, BVP and NBVP

Directional seated valves are a type of directional valve. As cone valves they are tightly sealed without leakage in the closed state. The directional seated valve type BVG is installed directly in the pipe. The valves type BVP and NBVP are valves for manifold mounting. The type NBVP has the standard connection pattern nominal size NG 6. 2/2, 3/2, 3/3 and 4/3 directional seated valves are available with different types of actuation. All connections can be subjected to the same pressures. Depending on the functional requirement, e.g. a check valve, a (consumer-side) restrictor and/or restrictor check valves is/are integrated into the type NBVP. The type NBVP is used together with other valves in the valve bank type BA to completely control the hydraulics.

Features and benefits:
- Explosion-proof design
- 4th switching position on 4/3 directional valves
- 8-Watt solenoid

Intended applications:
- Machine tools
- Woodworking and processing machinery
- Testing machinery
- Jig construction

Design and order coding example

<table>
<thead>
<tr>
<th>BVG1</th>
<th>- R /B2</th>
<th>- 1/4</th>
<th>- WGM 230</th>
</tr>
</thead>
</table>

Actuations: Solenoid, hydraulic, pneumatic, manual

Connection size or connection block

Additional elements
- Orifice in one port
- NBVP: orifice and/or check valve in the P gallery, orifice, restrictor check valve and/or pressure switches in port A, B, return pressure stop in T

Function
- 2/2-way directional valve (R, S), also available in version with position monitoring (RK, SK)
- 3/2-way directional valve (Z, Y), also available in version with position monitoring (ZK)
- 4/3-way directional valve (G, D)

Basic type, size
Type BVG and BVP, size 1 and 3
Type NBVP (with standard connection pattern NG 6), size 1

Nomenclature: Directional seated valve, zero leakage

Design:
- Individual valve for pipe connection
- Individual valve, Manifold mounting

Actuation:
- Solenoid
- Hydraulic
- Pneumatic
- Manual

p_{max}: 400 bar
Q_{max}: 20 l/min
Actuations:

Solenoid

- Solenoid voltages: 12V DC, 24V DC, 110V AC, 230V AC
- BVP 1, NBVP16 also available in ATEX-compliant version
- Version with M12 plug and 8-watt solenoid

Hydraulic

- Control pressure:
 - $p_{\text{contr. min}} = 24$ bar
 - $p_{\text{contr. max}} = 320$ bar

Pneumatic

- Control pressure:
 - $p_{\text{contr. min}} = 2 \ldots 3.5$ bar
 - $p_{\text{contr. max}} = 15$ bar

Manual

- Actuation torque:
 - approx. 1.5 ... 3 Nm

Function

<table>
<thead>
<tr>
<th>R</th>
<th>RK</th>
<th>S</th>
<th>SK</th>
<th>Z</th>
</tr>
</thead>
</table>

- Further circuit symbols available

<table>
<thead>
<tr>
<th>ZK</th>
<th>Y</th>
<th>G</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>![ZK Symbol]</td>
<td>![Y Symbol]</td>
<td>![G Symbol]</td>
<td>![D Symbol]</td>
</tr>
</tbody>
</table>

- Additional switching symbols available
- G, D: only for type NBVP16
General parameters and dimensions

<table>
<thead>
<tr>
<th>BVG 1</th>
<th>BVP 1</th>
<th>NBVP 16</th>
<th>BVG 3</th>
<th>BVP 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q<sub>max</sub> [lpm]</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>p<sub>max</sub> [bar]</td>
<td>400/250<sup>1)</sup></td>
<td>400/250<sup>1)</sup></td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>Ports (BSPP)</td>
<td>G 1/4, G 3/8</td>
<td>G 1/4, G 3/8</td>
<td>G 1/2</td>
<td>G 1/2</td>
</tr>
<tr>
<td>Dimensions [mm]</td>
<td>H<sub>max</sub></td>
<td>B<sub>max</sub></td>
<td>T<sub>max</sub></td>
<td>H<sub>max</sub></td>
</tr>
<tr>
<td>BVG 1</td>
<td>115 (130)</td>
<td>60</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>BVP 1</td>
<td>35</td>
<td>39</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>NBVP 16</td>
<td>230</td>
<td>45</td>
<td>45</td>
<td>2.1</td>
</tr>
<tr>
<td>BVG 3</td>
<td>145</td>
<td>80</td>
<td>50</td>
<td>3.3</td>
</tr>
<tr>
<td>BVP 3</td>
<td>155</td>
<td>50</td>
<td>76</td>
<td>2.4</td>
</tr>
</tbody>
</table>

<sup>1</sup) with solenoid actuation GM.. and WGM

- BVE: screw-in valve, also available with connection block for pipe connection
Example circuit:

BA2A5

- NBVP16G/B2.0R/3
- NBVP16G/B2.0R/3
- NBVP16G/R/S/NZP16Q22/3
- NBVP16G/R/S/NZP16Q22/3
- NBVP16Y/B2.0R/2/NZP16CZ5/50/3 - X84V - 9/100A
- NBVP16W/B2.0R/3
- 2 - LM24
Directional seated valves

2.2 Directional seated valve type BVE

Directional seated valves are a type of directional valve. As cone valves they are tightly sealed without leakage in the closed state.
The directional seated valve type BVE is a screw-in valve. 2/2 and 3/2 directional seated valves are available. All connections can be subjected to the same pressures.
 Optionally a version for highly viscous media (e.g. lubricating grease) is available.
Appropriate connection blocks make possible direct pipe connection or manifold mounting.

Features and benefits:
- Any flow direction
- No interaction between actuation elements and medium
- No resinification or sticking as a result of increased temperatures is possible.
- For highly viscous media (e.g. lubricating grease)

Intended applications:
- Lubrication systems
- Mining machinery
- Construction and construction material machinery
- Handling and mounting technology

Design and order coding example

<table>
<thead>
<tr>
<th>BVE1</th>
<th>- R -B1,0</th>
<th>- G 24</th>
<th>- 3/8</th>
</tr>
</thead>
</table>

Port size or connection block
- Actuations: Solenoid
- Additional elements: Orifice in one port
- Function: 2/2-way directional valve (R, S) 3/2-way directional valve (Z)
- Basic type, size: Type BVE, size 1, 3 and 5

Actuations:
- Solenoid

Solenoid voltages: 12V DC, 24V DC, 110V AC, 230V AC
Function

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General parameters and dimensions

BVE

<table>
<thead>
<tr>
<th>Q<sub>max</sub> [lpm]</th>
<th>p<sub>max</sub> [bar]</th>
<th>Dimensions [mm]</th>
<th>m<sub>max</sub> [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H<sub>max</sub></td>
<td>B<sub>max</sub></td>
</tr>
<tr>
<td>BVE 1</td>
<td>20</td>
<td>121</td>
<td>37</td>
</tr>
<tr>
<td>BVE 3</td>
<td>70</td>
<td>122,5</td>
<td>45</td>
</tr>
<tr>
<td>BVE 5</td>
<td>300</td>
<td>206,5</td>
<td>72</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Directional seated valves
 - Directional seated valve type BVE: D 7921

Similar products
- Type BA: Page 70
- Type NZP: Page 70
- Type BVH: Page 76
- Type BVG, BVP, NBVP: Page 144

Suitable male connectors:
- Line connector type MSD and others: D 7163
- With economy circuit: D 7813, D 7833
2.2 Directional seated valve type VP

Directional seated valves are a type of directional valve. As cone valves they are tightly sealed without leakage in the closed state. The directional seated valve type VP is a valve for manifold mounting. 2/2, 3/2 and 4/2 directional seated valves with different types of actuation are available. All connections can be subjected to the same pressures. The directional seated valve type VP is suitable above all for highly viscous media (e.g. lubricating grease). Appropriate connection blocks make possible direct pipe connection.

Features and benefits:
- Any flow direction
- No interaction between actuation elements and medium
- No sticking or resinification as a result of increased temperatures is possible.
- Suitable for highly viscous media (e.g. lubricating grease)
- Explosion-proof version

Intended applications:
- Lubricating systems
- Mining machinery
- Construction and construction materials machinery
- Handling and assembly technology

Design and order coding example

<table>
<thead>
<tr>
<th>VP1</th>
<th>-</th>
<th>R</th>
<th>-</th>
<th>3/4</th>
<th>-</th>
<th>G24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuation</td>
<td>Solenoid</td>
<td>Mechanical: roller, feeler</td>
<td>Manual: lever, turn-knob</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional connection block</td>
<td>For direct pipe connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>2/2-way directional seated valve (R, S)</td>
<td>3/2-way directional seated valve (Z)</td>
<td>4/2-way directional seated valve (W, G)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic type, size</td>
<td>Type VP, size 1</td>
<td></td>
<td>Versions conforming ATEX</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actuation:

<table>
<thead>
<tr>
<th>Solenoid</th>
<th>Hydraulic</th>
<th>Pneumatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control pressure:</td>
<td>Control pressure:</td>
<td>Control pressure:</td>
</tr>
<tr>
<td>$p_{\text{control min}} = 24$ bar</td>
<td>$p_{\text{control min}} = 2$... 3.5 bar</td>
<td>$p_{\text{control min}} = 15$ bar</td>
</tr>
<tr>
<td>$p_{\text{control max}} = 320$ bar</td>
<td>$p_{\text{control max}} = 15$ bar</td>
<td></td>
</tr>
</tbody>
</table>
Function

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>Z</th>
<th>G</th>
<th>W</th>
</tr>
</thead>
</table>

General parameters and dimensions

Individual valve

Example: VP1R-G24

Valve with sub-plate

Example: VP1W-3/4-WG 230

<table>
<thead>
<tr>
<th></th>
<th>Q_{max} [lpm]</th>
<th>P_{max} [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m_{max} [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP 1</td>
<td>15</td>
<td>400</td>
<td>G 1/4, G 3/8, G 3/4</td>
<td>127</td>
<td>40</td>
</tr>
<tr>
<td>VP 1 with sub-plate</td>
<td>15</td>
<td>400</td>
<td>G 1/4, G 3/8, G 3/4</td>
<td>147 ... 177</td>
<td>50 ... 100</td>
</tr>
</tbody>
</table>

- H_{max}: Values apply for electro-magnetic actuation

Associated technical data sheets:
- Directional seated valve type VP: D 7915

Similar products:
- Directional seated valve type BVG1, BVP1, NBVP16: Page 144
- Directional seated valve type BVE: Page 148

Male connectors:
- Line connector type MSD and others: D 7163
- With economy circuit: D 7813, D 7833
Lifting-lowering valves are a combination of directional valves and metering valves. The valve block type HSV provides the function of a 2/2-way directional seated valve with electrical actuation for lowering the load. Adjustable throttle valves or flow control valves independent of the load control the lowering speed. An integrated pressure-limiting valve limits the permissible load.

The lifting/lowering valve type HSV is used to control lifting equipment with single-acting cylinders.

Features and benefits:
- Optimal control of lifting and lowering function
- High pressures up to 400 bar
- Zero leakage to prevent unwanted lowering of loads and platforms
- Integrated overpressure protection

Intended applications:
- Cranes and lifting equipment
- Materials handling
- Road vehicle
- Mining machinery

Design and order coding example

<table>
<thead>
<tr>
<th>HSV21</th>
<th>- R1</th>
<th>- R-150</th>
<th>- G24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solenoid voltage</td>
<td>12V DC, 24V DC, 110V AC, 230V AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure limiting valve</td>
<td>Manually adjustable or fixed, pressure setting in bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Type HSV, sizes, 2, 4 and 7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Function

<table>
<thead>
<tr>
<th>With throttle</th>
<th>Without throttle</th>
<th>With/without throttle</th>
<th>With 2-way flow control valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 1</td>
<td>R 2</td>
<td>R 3</td>
<td>R 4</td>
</tr>
</tbody>
</table>

HSV 21
HSV 22
HSV 41
HSV 71

General parameters and dimensions

HSV 21 and HSV 22

HSV 41 and HSV 71

Associated technical data sheets:
- Lifting/lowering valve type HSV: D 7032

Male connectors:
- Line connector type MSD and others: D 7163
- With economy circuit: D 7813, D 7833
Directional seated valves

2.2 Switch unit type CR

Switch units combine the function of a directional seated valve with a pressure valve and check valve. They control dual stage pumps, a combination of high-pressure pump and low-pressure pump, in bottom and top ram presses. The low-pressure circuit and the high-pressure circuit are combined for rapid movement.

If the low-pressure value is reached or exceeded, the switch unit type CR switches the low-pressure circuit to circulation. The high-pressure pump carries out the pressing action. The switch unit hydraulic release acts automatically. It initiates surge-free decompression that relieves the press. In the closed state the switch unit has zero leakage.

The switch unit type CR can be attached directly to hydraulic power packs type MPN and RZ.

Features and benefits:
- Special valve for controlling upstroke presses
- Smooth, gentle switching
- No pressure drop during press operation due to zero leakage
- Fully automatic switching of the low-pressure pump to circulation

Intended applications:
- Machine tools (presses)
- Woodworking and processing machinery
- Printing and paper technology
- Foodstuff and packaging machinery

Design and order coding example

<table>
<thead>
<tr>
<th>CR4</th>
<th>M-WG230</th>
<th>- 400/60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure settings [bar]</td>
<td>High-/low pressure</td>
<td></td>
</tr>
<tr>
<td>Actuation mode</td>
<td>Solenoid</td>
<td></td>
</tr>
<tr>
<td>Voltage of the actuation solenoids 24V DC, 230V AC 50/60 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manually</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic type, size</td>
<td>Type CR, size 4 and 5</td>
<td></td>
</tr>
</tbody>
</table>
Function

CR 4M and CR 5M

<table>
<thead>
<tr>
<th>CR 4M</th>
<th>CR 4H</th>
</tr>
</thead>
</table>

General parameters and dimensions

CR 4M

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CR 4M</th>
<th>CR 4H</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{\text{max}}) [lpm]</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>(P_{\text{max}}) [bar]</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>Ports (BSPP)</td>
<td>400</td>
<td>(0) ... 60</td>
</tr>
<tr>
<td>Dimensions [mm]</td>
<td>G 1</td>
<td>G 1/4</td>
</tr>
<tr>
<td>Mass [kg]</td>
<td>G 3/4</td>
<td>G 1/4</td>
</tr>
<tr>
<td>M</td>
<td>max. 247.5</td>
<td>50</td>
</tr>
<tr>
<td>H</td>
<td>100</td>
<td>5.2</td>
</tr>
</tbody>
</table>

CR 4H

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CR 4H</th>
<th>CR 5M</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{\text{max}}) [lpm]</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>(P_{\text{max}}) [bar]</td>
<td>80</td>
<td>160</td>
</tr>
<tr>
<td>Ports (BSPP)</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Dimensions [mm]</td>
<td>400</td>
<td>(0) ... 60</td>
</tr>
<tr>
<td>Mass [kg]</td>
<td>G 1</td>
<td>G 1/4</td>
</tr>
<tr>
<td>M</td>
<td>G 1/4</td>
<td>max. 202</td>
</tr>
<tr>
<td>H</td>
<td>100</td>
<td>4.7</td>
</tr>
<tr>
<td>B</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>T</td>
<td>5.2</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Switch unit type CR: D 7150
- Hydraulic power packs type RZ: Page 62
- Compact hydraulic power packs type MP, MPN, MPNW, MPW: Page 54

Male connectors:
- Line connector type MSD and others: D 7163

Similar products:
- Two-stage valves type NE: Page 198
Directional seated valves

2.2 Lifting module type HMT and HST

Lifting modules or hoist control valves are a combination of directional valves and pressure control valves. They are used to control a lifting function. The flow rate is controlled or limited proportionally both on lifting and also on lowering.

In the lifting module type HMT and HST directional seated valves are used that ensure the load is held securely. 2-way pressure control valves are used to limit the maximum volumetric flow.

Valve sections of type SWS can be attached space-savingly to the lifting module to control additional functions. The lifting module type HMT and HST is suitable for use in industrial trucks and agricultural machinery.

Features and benefits:
- Flexible design for fixed or variable displacement pump systems
- Low spatial requirements due to steel design
- Flexible combination with directional valves

Intended applications:
- Materials handling (industrial trucks etc.)
- Cranes and lifting equipment
- Road vehicle

Features and benefits:
- Flexible design for fixed or variable displacement pump systems
- Low spatial requirements due to steel design
- Flexible combination with directional valves

Features and benefits:
- Flexible design for fixed or variable displacement pump systems
- Low spatial requirements due to steel design
- Flexible combination with directional valves

Intended applications:
- Materials handling (industrial trucks etc.)
- Cranes and lifting equipment
- Road vehicle

Nomenclature: Valve combination according to type consisting of:
- 2-way flow control valves
- 2-way seated valves
- Directional spool functions

Design: Valve bank
Actuation: Solenoid
p_{max}: 315 bar
Q_{max}: 120 lpm

Design and order coding example

<table>
<thead>
<tr>
<th>HMT34D</th>
<th>- 1/250</th>
<th>- G/MP/0/2</th>
<th>- 31EP - G 24</th>
</tr>
</thead>
</table>
| End plate | With two P ports and one R port
| | With prop. idle circulation valve
| | With solenoid valve for the parking brake

Valve sections, ancillary- and intermediate blocks
- Various intermediate blocks for mast tilting, mast shifting, auxiliary hydraulics
- Directional valve sections type SWR 1 with additional functions
- Directional valve sections type SWS 2

Connection block
- Pressure setting [bar] of the pressure limiting valve

Additional versions
- Connection blocks type SWR, SWS
- With flow divider
- With/without pressure limiting valve
- With shut-off valve for P and H (lift)

Basic type
- Lifting modules and hoist control valves
Drive concept an field of application:

<table>
<thead>
<tr>
<th>Drive concept</th>
<th>Application</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scissor lift</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Miniature stacker, Walkie stacker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Counter balance truck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Reach truck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Order picker (warehouse)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>no man aloft</th>
<th>man aloft</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>HMT</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Drive concept:

- 1: Constant delivery pump, lifting/lowering via flow controller (throttle)
- 2: Lifting via speed controlled pump, lowering via flow controller (throttle)

Circuit examples:

HMT 34-1/200-70F
- G/M/0/2 AN40 BN130
- D/M/0/02
- 31E-P12/G 24

Lifting module type HMT, size 3, connection size 4 with pressure-limiting valve (set to 200 bar), output controller with 70 l control orifice closed in normal position; segment G with shock and servo-suction valves (set values 40 and 130 bar) in ancillary block; end plate with idle circulation valve open in neutral position, proportional solenoid voltage for flow control valves 12V DC, solenoid voltage for directional spool valve and directional seated valves 24V DC.

Tilting
Function

Lifting modules and connection blocks:

<table>
<thead>
<tr>
<th></th>
<th>HST</th>
<th>HMT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intermediate blocks (main and initial lift):

<table>
<thead>
<tr>
<th>Size 2</th>
<th>Size 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>T2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size 2 and 3</th>
<th>Size 2 and 3</th>
<th>Size 3</th>
<th>Size 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>21E</td>
<td>31E</td>
</tr>
</tbody>
</table>

- Size 2: Hole pattern SWR 1, size 3: Hole pattern SWR 2/SWS 2

End plates:

<table>
<thead>
<tr>
<th>Size 2 and 3</th>
<th>Size 2 and 3</th>
<th>Size 3</th>
<th>Size 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General parameters and dimensions

HMT 34 ...

![Diagram of HMT 34 lifting module]

HST 3 ...

![Diagram of HST 3 lifting module]

Associated technical data sheets:
- Type HMT: Sk 7758 HMT ff
- Type HST: Sk 7650 HST ff

Similar products:
- Directional spool valves type SWR, SWS 2: [Page 92](#)
- Connection blocks type HMPL and HMPV: [Page 106](#)

Male connectors:
- Line connector type MSD and others: D 7163
- With economy circuit: D 7813, D 7833

Information on additional lifting modules on inquiry

<table>
<thead>
<tr>
<th></th>
<th>Q_{max} [lpm]</th>
<th>P_{max} (bar)</th>
<th>Note</th>
<th>Ports (BSPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST 2</td>
<td>20 - 40</td>
<td>315</td>
<td>Connection blocks of lifting module</td>
<td>P, R, H = G 1/2; M = G 3/8</td>
</tr>
<tr>
<td>HST 3</td>
<td>30 - 60</td>
<td></td>
<td>Add-on components:</td>
<td>P, R, H = G 3/4; M = G 3/8</td>
</tr>
<tr>
<td>HMT 3</td>
<td>70 - 90</td>
<td></td>
<td>- SWR/SWS-Valve sections</td>
<td>H, P, R = G 1/2; M = G 3/8</td>
</tr>
<tr>
<td>HMT 34</td>
<td>70 - 90</td>
<td></td>
<td>- Intermediate blocks</td>
<td>H = G 3/4; P, R = G 1/2; M = G 3/8</td>
</tr>
</tbody>
</table>
Directional seated valves are a type of directional valve. As ball valves they have zero leakage in the closed state.

A hand lever operates the eccentric shaft that controls the plunger for opening or closing the valve seats. The actuation via the hand lever is undertaken with automatic centring in the neutral position or with a notch. The directional seated valve type VH is suitable for pipe connection. The directional seated valve bank type VHR comprises several valves of type VH that have been clamped together connected in parallel via a tension rod to form a valve bank. The directional seated valve type VHP is available as a valve for manifold mounting.

Features and benefits:
- Pressures up to 700 bar manually switchable
- Actuation using hand lever with automatic centring in zero position or with notch
- Different arrangements in valve bank possible
- Leakage-free seated valve technology

Intended applications:
- Construction and construction materials machinery
- Offshore and marine technology
- Process engineering systems
- Oil hydraulics and pneumatics

Design and order coding example

<table>
<thead>
<tr>
<th>VH 1</th>
<th>H1</th>
<th>G1/N1/E2</th>
</tr>
</thead>
</table>

Hand lever with automatic return (1) or detent (2)

Additional versions:
- Actuation with contact switch for neutral position monitoring (K), optionally for single valves and valve banks

Basic type, size
- Type VH (Individual valve for pipe connection)
- Type VHP (Individual valve, manifold mounting)
- Type VHR (Valve bank)
- Size 1 and 2

Actuation:
- Return spring
- Detent

- **Symbol type VHR..**

- Return spring: automatic return to neutral position only up to approx. 50 bar. At pressures over 50 ... 700 bar the lever must be reset manually.
Function

Basic symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>VH</th>
<th>VHP</th>
<th>VHR</th>
<th>G</th>
<th>E</th>
<th>M</th>
<th>N</th>
<th>D</th>
<th>H</th>
<th>L</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![DIAGRAM]</td>
<td>![DIAGRAM]</td>
<td>![DIAGRAM]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- On type VHR max. 7 or 5 valves (size 1 or 2) can be combined
- Type H, L and S only as single valve, not for type VHR

General parameters and dimensions

Individual valve VH..

Valve bank VHR..

<table>
<thead>
<tr>
<th>Q_{max} [lpm]</th>
<th>p_{max} [bar]</th>
<th>Ports</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>VH 1, VHP 1, VHR 1</td>
<td>12</td>
<td>700</td>
<td>G 1/4</td>
</tr>
<tr>
<td>VH 2, VHR 2</td>
<td>25</td>
<td>500</td>
<td>G 3/8</td>
</tr>
</tbody>
</table>

Associated technical data sheets:

- Directional seated valve type VH, VHP and VHR: D 7647

Similar products:

- Directional seated valves type BVG 1, BVP 1: "Directional seated valve type BVG, BVP and NBVP"
- Directional seated valve type NBVP 16: D 7765 N
Directional seated valves

2.2 Directional seated valve type VZP

The seated valve type VZP is a manifold mounting valve that is designed as a zero-leakage, cone-seated valve in one size. The twin layout of the 3/2 and 2/2-way directional seated valves means that all functional elements for valve function and actuation share one housing, making them very compact. Depending on pairing, these valves can fulfil either one 4/4, 4/3 or 3/3-way function, or two independent 3/2 and 2/2-way individual functions. Compared with individual valves for manifold mounting of conventional layout, the advantages are lower spatial requirements and the possibility of directly mounting pressure switches for monitoring the consumer pressure. A particularly compact option is to combine several valves connected in parallel in one valve bank (type BVZP).

Features and benefits:
- Good price-performance ratio
- Max. operating pressures up to 450 bar
- Adapter plates for flange-mounting on compact hydraulic power packs
- Option to incorporate additional functions in the sub-plate, such as pressure switches, throttle and check valve combinations etc.

Intended applications:
- Machine tools (cutting and non-cutting)
- Mining machinery (incl. oil production)
- Clamping equipment, punching tools, jigs
- Rubber and plastics machinery

Design and order coding example

<table>
<thead>
<tr>
<th>VZP1</th>
<th>H</th>
<th>12B1,0</th>
<th>- G12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solenoid voltage 12V DC, 24V DC, 110V AC, 230V AC
- Versions with M12-plug and 8-Watt solenoid

Additional elements
- Indiv. valves with check valve insert in gallery P
- Indiv. valves with return pressure stop in gallery R
- Pressure switch for the consumer ports

Function
- 4/2-way functions via directional spool valve
- 4/3-way directional seated valve (G, D, E, O)
- 3/3-way directional seated valve (J, P)
- 2/2- and 3/2-way directional seated valve (F, D - H, M, N, R)

Basic type, size
- Twin valve type VZP, size 1
- Connection blocks for pipe connection
Function

Cone seated valves with 4/3- (4/4-) or 3/3- (3/4-) way functions up to 400 bar

<table>
<thead>
<tr>
<th>E</th>
<th>G</th>
<th>D</th>
<th>O</th>
<th>P</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Switching position when both solenoids are energized simultaneously

Ball seated valves with 3/2- (2/2-) way functions up to 450 bar (always two valve functions in one valve body)

<table>
<thead>
<tr>
<th>H</th>
<th>N</th>
<th>M</th>
<th>R</th>
<th>F</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General parameters and dimensions

VZP 1 (example with mounted pressure switches)

<table>
<thead>
<tr>
<th></th>
<th>(Q_{\text{max}}) [lpm]</th>
<th>(P_{\text{max}}) [bar]</th>
<th>Dimensions [mm]</th>
<th>(m) [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VZP 1</td>
<td>5... 15</td>
<td>250... 450</td>
<td>137... 142</td>
<td>35... 39</td>
</tr>
</tbody>
</table>

- Weight \(m \) [kg] +0.3 kg per mounted pressure switch

Associated technical data sheets:
- Directional seated valve type VZP: D 7785 A

Accessories:
- Pressure switches type DG 3.., DG 5E: Page 270

Male connectors:
- Line connector type MSD and others: D 7163
2.3 Pressure valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure-limiting valve type MV, SV and DMV</td>
<td>168</td>
</tr>
<tr>
<td>Pressure control valve type CMV, CMVZ, CSV and CSVZ</td>
<td>172</td>
</tr>
<tr>
<td>Pressure-limiting valve, pilot-controlled type DV, AS etc.</td>
<td>174</td>
</tr>
<tr>
<td>Sequence valves with check valve type VR</td>
<td>176</td>
</tr>
<tr>
<td>Proportional pressure-limiting valve type PMV and PDV</td>
<td>178</td>
</tr>
<tr>
<td>Pressure-reducing valve type ADC, ADM, ADME and AM</td>
<td>180</td>
</tr>
<tr>
<td>Pressure-reducing valve type ADM and VDM</td>
<td>182</td>
</tr>
<tr>
<td>Pressure-reducing valve type CDK, CLK, DK, DLZ and DZ</td>
<td>186</td>
</tr>
<tr>
<td>Proportional pressure-reducing valve type PM and PMZ</td>
<td>190</td>
</tr>
<tr>
<td>Proportional pressure-reducing valve type PDM</td>
<td>192</td>
</tr>
<tr>
<td>Proportional pressure-reducing valve type KFB and FB</td>
<td>194</td>
</tr>
<tr>
<td>Pressure-controlled shut-off valve type CNE</td>
<td>196</td>
</tr>
<tr>
<td>Two-stage valve type NE</td>
<td>198</td>
</tr>
<tr>
<td>Shut-off valve type LV and ALZ</td>
<td>200</td>
</tr>
<tr>
<td>Pressure-dependent shut-off valve type DSV and CDSV</td>
<td>202</td>
</tr>
<tr>
<td>Load-holding valve type LHK, LHDV and LHT</td>
<td>204</td>
</tr>
</tbody>
</table>
Pressure-limiting and sequence valves (also proportional)

<table>
<thead>
<tr>
<th>Type</th>
<th>Design</th>
<th>Adjustability</th>
<th>(p_{\text{max}}) (bar)</th>
<th>(q_{\text{max}}) (lpm)</th>
</tr>
</thead>
</table>
| **MV, SV, DMV** | ![Icon](icon1.png) Individual valve for pipe connection or manifold mounting
Screw-in valve, assembly kit | - fixed
- Manually adjustable | MVG - 13: 700
MVG - 14: 700
MV, SV - 4: 700
MV, SV - 5: 700
MV, SV - 6: 700
MV, SV - 8: 700
DMV - 4: 350
DMV - 5: 350
DMV - 6: 350
DMV - 8: 315 | MVG - 13: 8
MVG - 14: 8
MV, SV - 4: 20
MV, SV - 5: 40
MV, SV - 6: 70
MV, SV - 8: 160
DMV - 4: 20
DMV - 5: 40
DMV - 6: 75
DMV - 8: 160 |
| **CMV(Z), CSV(Z)** | ![Icon](icon2.png) Screw-in valve
Directly controlled | - fixed
- Manually adjustable | CMV - 1: 500
CMV - 2: 500
CMV - 3: 500
CSV - 2: 315
CSV - 3: 315
CSVZ - 2: 315
CMVZ - 2: 500 | CMV - 1: 20
CMV - 2: 40
CMV - 3: 60
CSV - 2: 40
CSV - 3: 60
CSVZ - 2: 40
CMVZ - 2: 40 |
| **DV, AS** | ![Icon](icon3.png) Individual valve for pipe connection or manifold mounting | - fixed
- Manually adjustable | DV - 3: 420
DV - 4: 420
DV - 5: 420
AS - 3: 350
AS - 4: 350
AS - 5: 350 | DV - 3: 40
DV - 4: 80
DV - 5: 120
AS - 3: 50
AS - 4: 80
AS - 5: 120 |
| **VR** | ![Icon](icon4.png) Insert valve
Version with housing | - fixed | 1: 315
2: 315
3: 315
4: 315 | 1: 15
2: 40
3: 65
4: 120 |
| **PMV, PDV** | ![Icon](icon5.png) Individual valve for pipe connection or manifold mounting | - Electro-proportional | PMV - 4: 700
PMV - 5: 450
PMV - 6: 320
PMV - 8: 180
PDV - 3: 350
PDV - 4: 350
PDV - 5: 350 | PMV - 4: 16
PMV - 5: 60
PMV - 6: 75
PMV - 8: 120
PDV - 3: 40
PDV - 4: 80
PDV - 5: 120 |
Pressure-reducing valves (also proportional)

<table>
<thead>
<tr>
<th>Type</th>
<th>Design</th>
<th>Adjustability</th>
<th>p_{max}/p_Δ (bar)</th>
<th>Q_{max} (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC, ADM, ADME, AM</td>
<td>• Screw-in valve for pipe connection</td>
<td>- fixed</td>
<td>ADC 1: 300/25</td>
<td>ADC 1: 2</td>
</tr>
<tr>
<td></td>
<td>• Screw-in valve for pipe connection</td>
<td></td>
<td>ADM 1: 315/70</td>
<td>ADM 1: 10</td>
</tr>
<tr>
<td></td>
<td>• Screw-in valve for pipe connection</td>
<td></td>
<td>ADME 1: 315/70</td>
<td>ADME 1: 8</td>
</tr>
<tr>
<td></td>
<td>• Screw-in valve for pipe connection</td>
<td></td>
<td>AM 1: 400/100</td>
<td>AM 1: 2</td>
</tr>
<tr>
<td>ADM, VDM</td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td>- fixed</td>
<td>ADM 1: 315/70</td>
<td>ADM 1: 10</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td>- Manually adjustable</td>
<td>ADM 11: 320/250</td>
<td>ADM 11: 12</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td></td>
<td>ADM 21: 320/250</td>
<td>ADM 21: 25</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td></td>
<td>ADM 22: 320/250</td>
<td>ADM 22: 25</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td></td>
<td>ADM 32: 320/250</td>
<td>ADM 32: 60</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td></td>
<td>ADM 33: 320/250</td>
<td>ADM 33: 60</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td></td>
<td>VDM 3: 400/300</td>
<td>VDM 3: 40</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td></td>
<td>VDM 4: 400/300</td>
<td>VDM 4: 70</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td></td>
<td>VDM 5: 400/300</td>
<td>VDM 5: 120</td>
</tr>
<tr>
<td>CDK, CLK, DK, DLZ, DZ</td>
<td>• Screw-in valve (2-way principle)</td>
<td>- fixed</td>
<td>CDK - 3: 500/450</td>
<td>CDK - 3: 22</td>
</tr>
<tr>
<td></td>
<td>• Screw-in valve (2-way principle)</td>
<td>- Manually adjustable</td>
<td>CLK - 3: 500/450</td>
<td>CLK - 3: 22</td>
</tr>
<tr>
<td></td>
<td>• Screw-in valve (2-way principle)</td>
<td></td>
<td>DLZ - 3: 400/380</td>
<td>DLZ - 3: 22</td>
</tr>
<tr>
<td></td>
<td>• Screw-in valve (2-way principle)</td>
<td></td>
<td>DK - 3: 500/450</td>
<td>DK - 3: 22</td>
</tr>
<tr>
<td></td>
<td>• Screw-in valve (2-way principle)</td>
<td></td>
<td>DZ - 3: 500/450</td>
<td>DZ - 3: 22</td>
</tr>
<tr>
<td>PM, PMZ</td>
<td>• Assembly kit</td>
<td>- Electro-proportional</td>
<td>PM - 1: 40/30</td>
<td>PM - 1: 2</td>
</tr>
<tr>
<td></td>
<td>• Assembly kit</td>
<td></td>
<td>PM - 11: 40/30</td>
<td>PM - 11: 2</td>
</tr>
<tr>
<td></td>
<td>• Assembly kit</td>
<td></td>
<td>PM - 12: 40/30</td>
<td>PM - 12: 2</td>
</tr>
<tr>
<td></td>
<td>• Assembly kit</td>
<td></td>
<td>PM - 22: 40/30</td>
<td>PM - 22: 2</td>
</tr>
<tr>
<td>PDM</td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td>- Electro-proportional</td>
<td>11: 320/320</td>
<td>11: 12</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td></td>
<td>12: 320/320</td>
<td>12: 12</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td></td>
<td>21: 320/180</td>
<td>21: 20</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td></td>
<td>22: 320/180</td>
<td>22: 20</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td></td>
<td>3: 350/350</td>
<td>3: 40</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td></td>
<td>4: 350/350</td>
<td>4: 80</td>
</tr>
<tr>
<td></td>
<td>• Individual valve for pipe connection or manifold mounting</td>
<td></td>
<td>5: 350/350</td>
<td>5: 120</td>
</tr>
<tr>
<td>KFB, FB</td>
<td>• Individual valve for pipe connection</td>
<td>- Manual</td>
<td>01: 120/30</td>
<td>01: 2</td>
</tr>
</tbody>
</table>
Externally pressure-controlled relief valves (switch-off, follow-up valves)

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>Adjustability</th>
<th>p_{max} (bar)</th>
<th>Q_{max} (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNE</td>
<td>2-way idle circulation valve</td>
<td>- fixed</td>
<td>CNE - 2: 500</td>
<td>CNE - 2: 30</td>
</tr>
<tr>
<td></td>
<td>Screw-in valve</td>
<td></td>
<td>CNE - 21: 500</td>
<td>CNE - 21: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CNE - 22: 420</td>
<td>CNE - 22: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CNE - 23: 500</td>
<td>CNE - 23: 30</td>
</tr>
<tr>
<td>NE</td>
<td>Two-stage valve (high-pressure/low-pressure stage)</td>
<td>- fixed</td>
<td>HP/LP: 20, 21: 700/55</td>
<td>HP/LP: 20, 21: 10/40</td>
</tr>
<tr>
<td></td>
<td>Individual valve for pipe connection</td>
<td></td>
<td>70: 500/60</td>
<td>70: 16/100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80: 500/30</td>
<td>80: 25/180</td>
</tr>
<tr>
<td>LV, ALZ</td>
<td>Shut-off valve (idle circulation valve, directly controlled or piloted)</td>
<td>- fixed</td>
<td>LV - 10: 350</td>
<td>LV - 10: 12</td>
</tr>
<tr>
<td></td>
<td>Individual valve for pipe connection or manifold mounting</td>
<td>- manually adjustable</td>
<td>LV - 20: 350</td>
<td>LV - 20: 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LV - 25: 350</td>
<td>LV - 25: 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALZ - 3: 350</td>
<td>ALZ - 3: 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALZ - 4: 350</td>
<td>ALZ - 4: 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALZ - 5: 350</td>
<td>ALZ - 5: 120</td>
</tr>
<tr>
<td>DSV, CDSV</td>
<td>Individual valve for pipe connection or manifold mounting</td>
<td>- fixed</td>
<td>CDSV - 1: 600</td>
<td>CDSV - 1: 8</td>
</tr>
<tr>
<td></td>
<td>Screw-in valve</td>
<td>- manually adjustable</td>
<td>DSV - 21-1: 400</td>
<td>DSV - 21-1: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSV - 2-2: 400</td>
<td>DSV - 2-2: 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSV - 2-3: 400</td>
<td>DSV - 2-3: 40</td>
</tr>
</tbody>
</table>

Load-holding valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>Adjustability</th>
<th>p_{max} (bar)</th>
<th>Q_{max} (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHK, LHDV, LHT</td>
<td>Load-holding valve, over centre valve</td>
<td>- fixed</td>
<td>LHK - 2: 400</td>
<td>LHK - 2: 20</td>
</tr>
<tr>
<td></td>
<td>Individual valve for pipe connection or manifold mounting</td>
<td>- manually adjustable</td>
<td>LHK - 3: 360</td>
<td>LHK - 3: 60</td>
</tr>
<tr>
<td></td>
<td>Screw-in valve, version for banjo bolt mounting</td>
<td></td>
<td>LHK - 4: 350</td>
<td>LHK - 4: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LHDV - 33: 420</td>
<td>LHDV - 33: 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LHT - 2: 400</td>
<td>LHT - 2: 28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LHT - 3: 420</td>
<td>LHT - 3: 130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LHT - 5: 400</td>
<td>LHT - 5: 250</td>
</tr>
</tbody>
</table>
Pressure valves

2.3 Pressure-limiting valve type MV, SV and DMV

Pressure-limiting valves and sequence valves are types of pressure control valves. Pressure-limiting valves safeguard the system against excessive system pressure or limit the operation pressure. Sequence valves generate a constant pressure difference between the inlet and outlet flow.

Type MV and SV is a directly controlled valve that is damped as standard. Versions that correspond to the Pressure Equipment Directive are also available.

Features and benefits:
- Operating pressures up to 700 bar
- Various adjustment options
- Numerous configurations

Intended applications:
- General hydraulic systems
- Test benches
- Hydraulic tools

Nomenclature:
- Pressure limiting valve, sequence valves
 (directly controlled)

Design:
- Individual valve for pipe connection
- Screw-in valve
- Individual manifold mounting valve
- Assembly kit

Adjustment:
- Fixed
- Manually adjustable

\[p_{\text{max}}: 700 \text{ bar} \]

\[Q_{\text{max}}: 5 \ldots 160 \text{ l/min} \]

Design and order coding example

<table>
<thead>
<tr>
<th>MVS 52</th>
<th>B</th>
<th>R</th>
<th>X</th>
<th>- 650</th>
</tr>
</thead>
</table>
| Pressure setting | }
| Optionally without dampening (X) | }
| Adjustability (while pressurized) | }
| • fixed | }
| • Manually adjustable | }
| • Adjustable with turn knob (self-locking/lockable) | }
| Pressure range and volumetric flow | }
| Pressure ranges A, B, C, E and F | }

Basic type, size
- Type MV.., DMV.. and SV..

Additional versions
- Multiple pressure limiting valves (2, 3, 4, 5 valves in parallel)
- Pressure-limiting valves with unit approval (TÜV valves) (type MVX, MVSX, MVEX, MVPX, SVX, size 4, 5 and 6)
- Various actuations: ball head for controls via cam, lever etc. (type MVG and MVP only)
<table>
<thead>
<tr>
<th>Function</th>
<th>MVS</th>
<th>MVE</th>
<th>SV</th>
<th>MVP</th>
<th>DMV</th>
<th>MVCS</th>
<th>SVC</th>
<th>MVB</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV<sup>1)</sup></td>
<td>MVG</td>
<td>MVE</td>
<td>SV</td>
<td>MVP</td>
<td>DMV</td>
<td>MVCS</td>
<td>SVC</td>
<td>MVB</td>
</tr>
</tbody>
</table>

Function
- Pressure limiting valve
- MV
 - Pressure limiting valve and differential pressure regulators
 - MVG
 - MVGC
- SV
 - Pressure limiting valve
 - MVP
 - DMV
 - MVCS
- SVC
 - Pressure limiting valve with free reflux $R \rightarrow P$ via a bypass check valve
- MVB
 - Pressure limiting valve and differential pressure regulators

Brief description
- Corner valve for pipe connection
- Screw-in valve
- Straight-way valve for straight pipe installation
- Manifold mounting valve
- Twin valve as shock valve for hydraulic motors
- Corner valve for pipe connection
- Straight-way valve for straight pipe installation
- Assembly kit

Size
- 4, 5, 6
- 13, 14, 4, 5, 6, 8
- 4, 5, 6, 8
- 4, 5, 6, 8
- 13, 14, 4, 5, 6
- 4, 5, 6
- 4, 5, 6, 8

p_{perm} [bar]
- 20
- 500
- 500
- 500
- 500
- 350
- 500
- 500
- 200

¹⁾ Only size 4, 5, 6, and 8
Type MVG and MVGC only size 13 and 14

Example circuit:

![Example circuit diagram]
General parameters and dimensions

MV, MVS

DMV

MVG

SV, SVC

See following table for dimensions
Pressure-limiting valve type MV, SV and DMV

<table>
<thead>
<tr>
<th>Size</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
<th>Size</th>
<th>Pressure range/Flow</th>
<th>Ports (BSPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H(_{\text{max}})</td>
<td>B/SW</td>
<td>T(_{\text{max}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MV, MVS, MVCS, MVE</td>
<td>4</td>
<td>126</td>
<td>24</td>
<td>48</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>142</td>
<td>29</td>
<td>60</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>164</td>
<td>36</td>
<td>70</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>208</td>
<td>40</td>
<td>60</td>
<td>2.0</td>
</tr>
<tr>
<td>DMV</td>
<td>4</td>
<td>107</td>
<td>40</td>
<td>52</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>123</td>
<td>50</td>
<td>65</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>142.5</td>
<td>60</td>
<td>75</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>192</td>
<td>80</td>
<td>96</td>
<td>4.5</td>
</tr>
<tr>
<td>MVP</td>
<td>4</td>
<td>102</td>
<td>28</td>
<td>35</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>113</td>
<td>32</td>
<td>40</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>133</td>
<td>35</td>
<td>50</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>172</td>
<td>50</td>
<td>60</td>
<td>1.6</td>
</tr>
<tr>
<td>MVE</td>
<td>13, 14</td>
<td>75</td>
<td>SW 27</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>MVG, MVGC</td>
<td>13, 14</td>
<td>94</td>
<td>20</td>
<td>42</td>
<td>0.3</td>
</tr>
<tr>
<td>SV, SVC</td>
<td>4</td>
<td>-</td>
<td>SW 22</td>
<td>87</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-</td>
<td>SW 27</td>
<td>108</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-</td>
<td>SW 32</td>
<td>132</td>
<td>0.9</td>
</tr>
<tr>
<td>SV</td>
<td>8</td>
<td>-</td>
<td>SW 41</td>
<td>157</td>
<td>0.9</td>
</tr>
</tbody>
</table>

1) For pipe connection versions only

Associated technical data sheets:
- Pressure-limiting valve type MV, SV and DMV: D 7000/1
- Pressure-limiting valve and pre-load valve type MVG, MVE, and MVP: D 3726
- Pressure-limiting valve (installation kit) type MVF etc.: D 7000 E/1
- Multiple pressure-limiting valve type MV: D 7000 M
- Pressure-limiting valve, with unit approval type MV .X: D 7000 TUV

Similar products:
- Pressure control valves for screwing in type CMV, CSV: Page 172
- Pilot-controlled pressure control valves type DV: Page 174
- Pilot-controlled pressure control valves type A: Page 174
Pressure valves

2.3 Pressure control valve type CMV, CMVZ, CSV and CSVZ

Pressure-limiting valves and sequence valves are types of pressure control valves. Pressure-limiting valves safeguard the system against excessive system pressure or limit the operation pressure. Sequence valves generate a constant pressure difference between the inlet and outlet flow.

Type CMV and CSV is a directly controlled valve that is damped as standard. Versions that correspond to the Pressure Equipment Directive are also available. Type CMVZ and CSVZ is not influenced by the pressure conditions downstream and is therefore suitable for use in loss-free sequence control systems.

Valve type CMV and CSV can be screwed-in and can be integrated into control blocks. The necessary mounting holes are straightforward to make.

Features and benefits:
- Operating pressures up to 500 bar
- Various adjustment options
- Easily produced mounting hole

Intended applications:
- General hydraulic systems
- Test benches
- Hydraulic tools

Design and order coding example

<table>
<thead>
<tr>
<th>CMV 3</th>
<th>F</th>
<th>R</th>
<th>- 200</th>
<th>- 1/4</th>
</tr>
</thead>
</table>

Single connection block for pipe connection

Adjustability (while pressurized) fixed or manually adjustable

Pressure setting [bar] 500 bar
Pressure range Pressure ranges B, C, E and F

Basic type, size Type CMV (pressure limiting valve), size 1 to 3
Type CSV (pressure difference valve), size 2 to 3

Additional versions:
- Sequence valves CMVZ or CSVZ
- Version with unit approval type CMVX
- Undamped version (CMV)

<table>
<thead>
<tr>
<th>Nomenclature:</th>
<th>Pressure limiting valve, sequence valves (directly controlled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design:</td>
<td>Screw-in valve</td>
</tr>
<tr>
<td>Adjustment:</td>
<td>Fixed/Mannually adjustable</td>
</tr>
<tr>
<td>p_{max}:</td>
<td>500 bar</td>
</tr>
<tr>
<td>Q_{max}:</td>
<td>60 lpm</td>
</tr>
</tbody>
</table>
Function

- **CMV**
 - Pressure limiting valve (port R pressure resistant)

- **CMVZ**
 - Sequence valves with by-pass check valve

General parameters and dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>(Q_{\text{max}}) [lpm]</th>
<th>Pressure range (\rho_{\text{max}}) [bar]</th>
<th>(M)</th>
<th>SW = a/f</th>
<th>Dimensions [mm]</th>
<th>(m) [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV, CMVZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | 20 | F: 80
E: 160
C: 315 |
| 2 | 40 |
| 3 | 60 |
| CSV, CSVZ |
| 2 | 40 |
| 3 | 60 |

Associated technical data sheets:

- Pressure control valve type CMV, CMVZ, CSV and CSVZ: D 7710 MV
- Pressure-limiting valve, with unit approval type CMVX: D 7710 TÜV
- Pilot-controlled pressure control valves type DV: Page 174
- Pilot-controlled pressure control valves type AS: Page 174

Similar products:

- Pressure-limiting valves type MV, SV, etc.: Page 168
- Miniature pressure-limiting valves type MVG and others: Page 168
Pressure-limiting valves are a type of pressure control valve. They safeguard the system against excessive system pressure or limit the operation pressure. The pressure-limiting valve type DV and AS is pilot-controlled. Type AS also has an additional check valve in the consumer port.

Features and benefits:
- Various adjustment options
- Various additional functions

Intended applications:
- General hydraulic systems
- Test benches

Design and order coding example

<table>
<thead>
<tr>
<th>DV3</th>
<th>G</th>
<th>H</th>
<th>R</th>
<th>- WN 1F-24</th>
<th>- 200</th>
</tr>
</thead>
</table>

- Pressure setting [bar]
 - 2/2-way directional seated valve: Optionally with mounted 2/2-way directional seated valve for arbitrary idle circulation
 - Adjustable in operation: Fixed or manually adjustable (R)
 - Various actuations for the pilot valve: ball head for controls via cam, lever etc. (type DV, DVE)

- Pressure range
 - N: 2 to 100 bar
 - H: 5 to 420 bar

- Line connection: Pipe connection or manifold mounting

- Basic type, size
 - Type DV (internal control oil drain),
 - Type DVE (external control oil drain),
 - Type DF (valve for remote control), size 3 to 5
 - Type AS (additional check valve), size 3 to 5
 - Type AE (release valve), size 3 to 5

- Additional versions:
 - Additional switching combinations with the types AS and AE

<table>
<thead>
<tr>
<th>Nomenclature:</th>
<th>Pressure limiting valve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sequence valve</td>
</tr>
<tr>
<td></td>
<td>Follow-up valve (piloted)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design:</th>
<th>Individual valve for pipe connection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Individual valve manifold mounting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adjustment:</th>
<th>Fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manually adjustable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_{max}</th>
<th>420 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{max}</td>
<td>120 lpm</td>
</tr>
</tbody>
</table>
Function

DV
Pressure limiting, sequence valve

DVE
Follow-up valve

DF
Pressure limiting, sequence valve, follow-up valve or 2/2-way directional valve (remote controlled, depending on the kind of valve connected to port X)

AS
Pressure limiting valve

AE
Release valve (remote controlled), combined function as pressure limiting valve possible (type ASE)

General parameters and dimensions

<table>
<thead>
<tr>
<th>Type, size</th>
<th>Q_{max} [lpm]</th>
<th>Pressure range: p_{max} [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DV, DVE, DF</td>
<td></td>
<td></td>
<td>H, B, B1, T, T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>H: 100</td>
<td>G 1/2</td>
<td>30, 60, -</td>
<td>66, -</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>H: 420</td>
<td>G 3/4</td>
<td>40, 65, 60</td>
<td>71, 78</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td></td>
<td>G 1</td>
<td>50, 80, 88</td>
<td>73, 81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type, size</th>
<th>Q_{max} [lpm]</th>
<th>Pressure range: p_{max} [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg], 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS, ASE, AE</td>
<td></td>
<td></td>
<td>H, H1, B, B1, T, T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>H: 200</td>
<td>G 1/2</td>
<td>40, - 60, -</td>
<td>80, -</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>H: 350/300 (type AE)</td>
<td>G 3/4</td>
<td>40, 40, 70</td>
<td>80, 94</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td></td>
<td>G 1</td>
<td>6,3, 40, 100</td>
<td>94, 85</td>
</tr>
</tbody>
</table>

1) Versions for pipe connection/manifold mounting (with installed solenoid valve + 0.6 kg)

Associated technical data sheets:
- Pressure-limiting valve, pilot-controlled type DV, DVE and DF: D 4350
- Pressure valve with check valve type AL, AE and AS: D 6170

Similar products:
- Pressure-limiting valves type MV, SV, etc.: Page 168
- Miniature pressure-limiting valves type MVG and others: Page 168
- Pressure-limiting valves type CMV(Z): Page 172
2.3 Sequence valves with check valve type VR

Pre-load valves, also called sequence valves are a type of pressure control valve. They generate a largely constant pressure drop between the inlet and outlet on the valve. In the opposite direction the flow can pass freely. In the normal position the valve has minor leakage.

The sequence valve type VR is available as a screw-in valve and in a housing version for in-line installation.

The primary application area is in return lines for oscillation damping, mainly in lifting equipment, lifting platforms, handling systems and in lifting gantries as fall protection.

Features and benefits:
- Compact screw-in valve

Intended applications:
- Lifting equipment
- Lifting platforms
- Handling technology

Design and order coding example

<table>
<thead>
<tr>
<th>VR 3</th>
<th>3</th>
<th>C</th>
</tr>
</thead>
</table>

- Design with housing
 - Cartridge valve
 - Versions with housing for pipe connection
 - Design with metric fine thread

- Pre-load pressure
 - Open-up pressure Δp_{max} 3 to 15 bar

Basic type, size
- Type VR, size 1 to 4

Nomenclature: Sequence valve

Design: Screw-in valve

Combination with housing for pipe connection

Adjustment: Fixed (non-adjustable)

- p_{max}: 315 bar
- Δp_{max}: 15 bar
- Q_{max}: 120 lpm
Function

VR

Screw-in valve

Version with housing for pipe connection

General parameters and dimensions

VR 3 3 C	Insert valve
VR 4 9 E	Version with housing
VR 1 15 G	Version with housing

<table>
<thead>
<tr>
<th>Q_{max} [lpm]</th>
<th>ΔP_{max} [bar]</th>
<th>Dimensions [mm]</th>
<th>m [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR 1</td>
<td>15</td>
<td>G 1/4 (A)</td>
<td>31</td>
</tr>
<tr>
<td>VR 2</td>
<td>40</td>
<td>G 3/8 (A)</td>
<td>36</td>
</tr>
<tr>
<td>VR 3</td>
<td>65</td>
<td>G 1/2 (A)</td>
<td>42</td>
</tr>
<tr>
<td>VR 4</td>
<td>120</td>
<td>G 3/4 (A)</td>
<td>54</td>
</tr>
</tbody>
</table>

1) The selected pre-load pressure e.g. opening pressure cannot be altered
2) Individual valve/design with housing

Associated technical data sheets:
- Sequence valves with check valve type VR: D 7340

Similar products:
- Pressure-limiting valves type MV, SV, etc.: Page 168
- Miniature pressure-limiting valves type MVG and others: Page 168
- Pilot-controlled pressure control valves type DV: Page 174
- Pressure-limiting valves type CMV: Page 172
Pressure valves

2.3 Proportional pressure-limiting valve type PMV and PDV

Proportional pressure-limiting valves are a type of pressure control valve. They remotely control the pressure in hydraulic systems continuously and electrically.

The pressure-limiting valve type PMV is a directly actuated valve in a spring-loaded ball version. The pressure can be set to up to 700 bar. The pressure-limiting valve type PDV is a pilot valve in a piston version, where pressures up to 350 bar can be set. The pressure-limiting valve type PMV and PDV is available as a single valve for pipe connection or as a manifold mounting valve.

The proportional pressure-limiting valve is particularly suitable for maximum pressure limitation in hydraulic systems.

Features and benefits:
- Max. operating pressure 700 bar
- Precise control

Intended applications:
- General hydraulics
- Test benches
- Mining machinery

Design and order coding example

<table>
<thead>
<tr>
<th>PDV4G</th>
<th>H - 44 - G24</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMVP4</td>
<td>H - 44 - G24</td>
</tr>
</tbody>
</table>

- **Solenoid voltage**
 - Prop. solenoid
 - 12V DC, 24V DC
 - Control using proportional amplifier or PLVC

- **Pressure range [bar]**
 - Type PMV (pipe connection), type PMVP (manifold mounting)
 - Optionally with separate control oil supply, i.e. pressure reduction right above 0 bar, zero-leakage in the main pump circuit (type PMVS, PMVPS)
 - Type PDV.G (pipe connection), type PDV.P (manifold mounting)
 - Additionally with 2/2-way solenoid valves for arbitrary idle circulation

Function

<table>
<thead>
<tr>
<th>PMV, PDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe connection</td>
</tr>
</tbody>
</table>
General parameters and dimensions

PMV

![PMV Diagram](image1)

PMVP

![PMVP Diagram](image2)

PDV..G

![PDV..G Diagram](image3)

PDV..P

![PDV..P Diagram](image4)

<table>
<thead>
<tr>
<th>Size</th>
<th>(Q_{\text{max}}) [lpm]</th>
<th>Pressure range (p_{\text{max}}) [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>(m) [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>G 1/4, G 3/8</td>
<td>H</td>
<td>B</td>
</tr>
<tr>
<td>PMV/PMVP</td>
<td></td>
<td></td>
<td>G 1/4, G 3/8</td>
<td>H</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>41: 180, 42: 290, 43: 440, 44: 700</td>
<td>G 1/4, G 3/8</td>
<td>97/95</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>16... 60</td>
<td>41: 110, 42: 180, 43: 270, 44: 450</td>
<td>G 1/4, G 3/8, G 1/2</td>
<td>98/95</td>
<td>35/40</td>
</tr>
<tr>
<td>6</td>
<td>60... 75</td>
<td>41: 80, 42: 130, 43: 190, 44: 320</td>
<td>G 3/8, G 1/2, G 3/4</td>
<td>102/95</td>
<td>40/50</td>
</tr>
<tr>
<td>8</td>
<td>120</td>
<td>41: 45, 42: 70, 43: 110, 44: 180</td>
<td>G 3/4, G 1</td>
<td>107/97</td>
<td>45/60</td>
</tr>
<tr>
<td>PDV..G/PDV..P</td>
<td></td>
<td></td>
<td>G 1/2</td>
<td>96</td>
<td>66</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>N: 130, M: 200, H: 350</td>
<td>G 3/4</td>
<td>99.5</td>
<td>71/78</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td></td>
<td>G 1</td>
<td>104.5</td>
<td>73/81</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) For pipe connection versions only

Associated technical data sheets:
- Proportional pressure-limiting valve type PMV and PMVP: D 7485/1
- Proportional pressure-limiting valve type PDV and PDM: D 7486
- Proportional pressure-limiting valve type NPMVP: D 7485 N
- Intermediate plate type NZP: D 7788 Z

Additional electrical components:
- Proportional amplifier: Page 278
- Programmable logic valve control type PLVC: Page 280
- CAN node type CAN-IO: Page 282
- Other electronic accessories See "Electronics"
Pressure reducing valves are a type of pressure control valve. They maintain a largely constant outlet pressure even at a higher and changing inlet pressure. The pressure reducing valve type ADC and AM is suitable for the supply of control circuits with low oil consumption. These valves feature an override compensation, i.e. acting like a pressure-limiting valve if the secondary pressure exceeds the set pressure e.g. due to external forces. There is a design-related leakage flow.

Features and benefits:
- Compact design
- Numerous configurations

Intended applications:
- For control oil supply in pilot circuits

Nomenclature:
- Pressure reducing valve

Design:
- Screw-in valve
- Valve for pipe connection

Adjustment:
- Fixed (non-adjustable)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{max}^P</td>
<td>300 ... 400 bar</td>
</tr>
<tr>
<td>p_{max}^A</td>
<td>15 ... 100 bar</td>
</tr>
<tr>
<td>Q_{max}</td>
<td>2 ... 10 lpm</td>
</tr>
</tbody>
</table>

Design and order coding example

<table>
<thead>
<tr>
<th>ADC</th>
<th>-25</th>
<th>-1/4</th>
</tr>
</thead>
</table>

- **Design**
 - Cartridge valve
 - Design with housing for direct pipe connection
 - Version with housing for manifold mounting (type AM 11)

- **Pressure downstream**
 - Pressure at port A [bar]

- **Basic type**
 - Type ADC, AM
 - Type ADM, ADME

- Type ADM 1 adjustable version available

Function

ADC, AM, ADM, ADME

- Screw-in valve
- Pipe installation
General parameters and dimensions

ADC 1 -.25
Pressure-reducing valve type ADC 1 as screw-in valve, pressure at A approx. 25 bar

AM 1 - 20 -1/4
Pressure-reducing valve type AM 1, version for pipe connection (ports G 1/4 (BSPP)), pressure at A approx. 20 bar

ADME 1...
Pressure-reducing valve type ADME 1, version for pipe connection, pressure at A approx. 70 bar

<table>
<thead>
<tr>
<th>Q_{max} [lpm]</th>
<th>p_{max} [bar]</th>
<th>Outlet pressure [bar] at A</th>
<th>Ports (BSPP)(^1)</th>
<th>m_{max} [kg]</th>
<th>Screw-in valve</th>
<th>Pipe Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC 1</td>
<td>2</td>
<td>300</td>
<td>15, 25</td>
<td>G 1/4</td>
<td>0.03</td>
<td>0.32</td>
</tr>
<tr>
<td>AM 1</td>
<td>2</td>
<td>400</td>
<td>20, 30, 40, 100</td>
<td>G 1/4</td>
<td>0.03</td>
<td>0.3</td>
</tr>
<tr>
<td>ADM 1</td>
<td>8 ...10</td>
<td>300</td>
<td>15, 20, 30, 70</td>
<td>G 1/4</td>
<td>-</td>
<td>0.34</td>
</tr>
<tr>
<td>ADME</td>
<td>8</td>
<td>300</td>
<td>15, 20, 30</td>
<td>-</td>
<td>0.05</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^1\) In version for pipe connection only

Associated technical data sheets:
- Pressure-reducing valve type ADC, ADM, ADME and AM: Page 186
- Prop. pressure reducing valves type PDM: Page 192
- Miniature prop. pressure reducing valves type PM, PMZ: Page 190

Similar products:
- Pressure reducing valves type ADM, VDM: Page 182
- Pressure reducing valves type CDK: Page 186
Pressure reducing valves are a type of pressure control valve. They maintain a largely constant outlet pressure even at a higher and changing inlet pressure. The pressure reducing valve type ADM is directly controlled, the type VDM is hydraulically pilot-controlled. These valves feature an override compensation, i.e. acting like a pressure-limiting valve if the secondary pressure exceeds the set pressure e.g. due to external forces. There is a design-related leakage flow.

Features and benefits:
- With safety valve function
- Various adjustment options
- Various additional functions

Intended applications:
- General hydraulics
- Jigs
- Test benches

Design and order coding example

ADM 22

<table>
<thead>
<tr>
<th>Pressure setting [bar]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustability in operation</td>
<td>• Fixed (-)</td>
</tr>
<tr>
<td></td>
<td>• Manually adjustable (R)</td>
</tr>
<tr>
<td></td>
<td>• Adjustable with turn knob (self-locking -V/lockable -H)</td>
</tr>
<tr>
<td>Pressure range</td>
<td>Pressure ranges for outlet pressure at A</td>
</tr>
<tr>
<td>Basic type, size</td>
<td>Type ADM (non-piloted), size 1 to 3</td>
</tr>
</tbody>
</table>

VDM 5

<table>
<thead>
<tr>
<th>Pressure setting [bar]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustability in operation</td>
<td>• Fixed (-)</td>
</tr>
<tr>
<td></td>
<td>• Manually adjustable (R)</td>
</tr>
<tr>
<td>Pressure range</td>
<td>Pressure ranges for outlet pressure at A</td>
</tr>
<tr>
<td>Basic type, size</td>
<td>Type VDM (hydraulically piloted), size 3 to 5</td>
</tr>
<tr>
<td></td>
<td>• Hydraulically piloted pressure-reducing valve type VDX (pressure-limiting valve at port L)</td>
</tr>
</tbody>
</table>
Function

ADM...
Valve for pipe connection
Manifold mounting valve

VDM...
Valve for pipe connection
Manifold mounting valve

General parameters and dimensions

ADM 22 DR
Directly controlled pressure reducing valve type ADM size 2, for pipe connection (tapped ports G 3/8 (BSPP), coding 2), pressure range 30 to 120 bar (coding D), pressure manually adjustable (coding R)

ADM...P
Manifold mounting valve
VDM...G
Valve for pipe connection

VDM 5 PH - 250
Piloted pressure reducing valve type VDM size 5,
manifold mounting (coding P),
pressure range 10 to 400 bar (coding H),
pressure fixed to 250 bar

<table>
<thead>
<tr>
<th>Q_{max} [lpm]</th>
<th>p_{max} [bar]</th>
<th>p_{max A} [bar]</th>
<th>Ports (BSPP)</th>
<th>Leakage flow Q_{leak} [lpm]</th>
<th>Dimensions [mm]</th>
<th>m_{max} [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>H1</td>
</tr>
<tr>
<td>ADM 1..</td>
<td>12</td>
<td>300</td>
<td>F: 30</td>
<td>G 1/4</td>
<td>approx. <0.05</td>
<td>30</td>
</tr>
<tr>
<td>ADM 2..</td>
<td>25</td>
<td></td>
<td>D: 120</td>
<td>G 1/4, G 3/8</td>
<td>approx. <0.05</td>
<td>30</td>
</tr>
<tr>
<td>ADM 3..</td>
<td>60</td>
<td></td>
<td>C: 160</td>
<td>G 3/8, G 1/2</td>
<td>approx. <0.07</td>
<td>30</td>
</tr>
<tr>
<td>VDM 3..</td>
<td>40</td>
<td>400</td>
<td>F: 25</td>
<td>G 1/2</td>
<td>approx. <0.4</td>
<td>30</td>
</tr>
<tr>
<td>VDM 4..</td>
<td>70</td>
<td></td>
<td>D: 100</td>
<td>G 3/4</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>VDM 5..</td>
<td>120</td>
<td></td>
<td>C: 160</td>
<td>G 1</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

1) Max. pressure difference is 300 bar between inlet and outlet
2) For pipe connection versions
3) Version for pipe connection / manifold mounting
Example circuit:

HK 43 LDT/1 M - ZZ 2.7/9.8
-AN 21 F 2-D45-F50
-BA 2
-NSMD 2 K/GRK/0
-1-G 24

Associated technical data sheets:
- Pressure-reducing valve type ADM: D 7120
- Pressure-reducing valve, pilot-controlled type VDM: D 5579
- Pressure reducing valves type CDK: Page 186
- Prop. pressure reducing valves type PDM: Page 192

Similar products:
- Miniature pressure reducing valves type ADC and others: Page 180
- Miniature prop. pressure reducing valves type PM, PMZ: Page 190
Pressure reducing valves are a type of pressure control valve. They maintain a largely constant outlet pressure even at a higher and changing inlet pressure. The pressure reducing valve type CLK features an override compensation, i.e. acting like a pressure-limiting valve if the secondary pressure exceeds the set pressure e.g. due to external forces. The pressure reducing valve type DK features a tracked pressure switch, e.g. pressure and switch are set simultaneously with an adjustment device. All versions have zero leakage when in the closed state. The valve type CDK and CLK can be screwed-in and can be integrated into control blocks. The necessary mounting holes are straightforward to make.

Features and benefits:
- Zero leakage in closed state

Intended applications:
- General hydraulic systems
- Jigs
- Test benches

Nomenclature:
- Pressure reducing valve (2-way valve)

Design:
- Screw-in valve combination with a connection block for
 - Pipe connection
 - Manifold mounting

Adjustment:
- Fixed
- Manually (adjustable)

Design and order coding example

<table>
<thead>
<tr>
<th>CDK 3 -2 R - 250</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure setting [bar]</td>
<td></td>
</tr>
<tr>
<td>Adjustment</td>
<td></td>
</tr>
<tr>
<td>Fixed (-)</td>
<td></td>
</tr>
<tr>
<td>Manually adjustable (R)</td>
<td></td>
</tr>
<tr>
<td>Adjustable with turn knob (self-locking -V/lockable -H)</td>
<td></td>
</tr>
</tbody>
</table>

Basic type and pressure range
- Type CDK, type CLK (with additional override compensation)
 - Screw-in valve
 - Version with connection block for pipe connection with/without pressure-limiting valve
 - Version with connection block for manifold mounting with/without pressure-limiting valve
 - In intermediate plate design NG6 (type NZP)

<table>
<thead>
<tr>
<th>Design and order coding example</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CDK 3 -2 R - 250</td>
<td></td>
</tr>
<tr>
<td>Pressure setting [bar]</td>
<td></td>
</tr>
<tr>
<td>Adjustment</td>
<td></td>
</tr>
<tr>
<td>Fixed (-)</td>
<td></td>
</tr>
<tr>
<td>Manually adjustable (R)</td>
<td></td>
</tr>
<tr>
<td>Adjustable with turn knob (self-locking -V/lockable -H)</td>
<td></td>
</tr>
<tr>
<td>Basic type and pressure range</td>
<td></td>
</tr>
<tr>
<td>Type CDK, type CLK (with additional override compensation)</td>
<td></td>
</tr>
<tr>
<td>Screw-in valve</td>
<td></td>
</tr>
<tr>
<td>Version with connection block for pipe connection with/without pressure-limiting valve</td>
<td></td>
</tr>
<tr>
<td>Version with connection block for manifold mounting with/without pressure-limiting valve</td>
<td></td>
</tr>
<tr>
<td>In intermediate plate design NG6 (type NZP)</td>
<td></td>
</tr>
</tbody>
</table>
Additional elements
Orifice/throttle

Pressure setting [bar]

- Fixed (-)
- Manually adjustable (R)
- Adjustable with turn knob (self-locking -V/lockable -H)

Basic type and pressure range

Type DK (with tracked pressure switch)
Type DZ with type CDK
Type DLZ with type CLK
- With bypass check valve
- Manifold mounting
- Version with connection block for pipe connection

Function

<table>
<thead>
<tr>
<th>CDK</th>
<th>CLK</th>
<th>CDK 3. -..-1/4-DG3.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Screw-in valve
Version for pipe connection, a pressure switch type DG 3. May be installed as option, additional port for pressure gauge

<table>
<thead>
<tr>
<th>CDK 3. -..-P</th>
<th>DZ, DLZ</th>
<th>DK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manifold mounting valve
Manifold mounting valve, optional with orifice/throttle and bypass check valve
Manifold mounting valve with tracked pressure switch
General parameters and dimensions

<table>
<thead>
<tr>
<th>Q_{\text{max}} [lpm]</th>
<th>Pressure range p_{\text{max}} [bar]</th>
<th>Ports (BSPP)</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6... 22</td>
<td>-08: 450 (^{1)})</td>
<td>G1/4</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>-081: 500 (^{1)})</td>
<td></td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>-1: 300..</td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>-11: 380..</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2: 200..</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5: 130..</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-51: 165</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{1)}\) Only available as type CDK and DK
Circuit examples

Example of a version with large flow rate $Q_{in} \rightarrow P$
Example: $Q_p = 15 \text{ lpm}$ [formula]

![Application example for large flow rate](image1)

1. e.g. type RK 2G in acc. with D 7445
2. $Q_{return} = 45 \text{ lpm}$
3. $Q_p = 15 \text{ lpm}$
4. Type CDK 3-2-1/4

Example of a version with undesired return flow

![Application example for undesired return flow](image2)

1. e.g. type RK 1E in acc. with D 7445 (shown here screwed into port A of the CDK 3 valve)
2. Type CDK 3-2-1/4-DG 34

Use in the valve bank, shown here with seated valves type BVZP 1

BVZP 1 A - 1/300 - G22/0
- G22/CZ2/100/4/2
- WN1H/10/4
- 1 - 1 - G 24

Application example in the valve bank

1. Type CDK 3-2-100 shown here incorporated as -/CZ 2/100...

Associated technical data sheets:
- Pressure-reducing valve type CDK: D 7745
- Pressure-reducing valve type CLK: D 7745 L
- Pressure-reducing valve type DK, DZ and DLZ: D 7941

Similar products:
- Pressure reducing valves type ADM, VDM, VDX: Page 182
- Miniature pressure reducing valves type ADC and others: Page 180
- Prop. pressure reducing valves type PDM: Page 192

Intermediate plates:
- Intermediate plate type NZP: D 7788 Z

Accessories:
- Pressure switches Typ DG 3., DG 5 E: Page 270
2.3 Proportional pressure-reducing valve type PM and PMZ

Proportional pressure-reducing valves are a type of pressure control valve. They remotely control the pressure in hydraulic systems continually and electrically.

The proportional pressure-reducing valve type PM and PMZ is a directly actuated valve with a piston and is controlled electro-proportionally. It continuously maintains a constant pressure on the secondary pressure side, independently of the inlet side. The proportional pressure-reducing valve type PM is available as a single valve. The proportional pressure-reducing valve type PMZ is a twin valve.

The proportional pressure-reducing valve type PM and PMZ is particularly suitable for use as a pilot valve for actuators.

Features and benefits:
- Compact design
- Numerous configurations
- Explosion-proof versions

Intended applications:
- For control oil supply in pilot circuits

Design and order coding example

<table>
<thead>
<tr>
<th>Design and order coding example</th>
<th>PM 1</th>
<th>-11</th>
<th>B 0,6</th>
<th>-G24</th>
<th>-NBR</th>
</tr>
</thead>
</table>

Seals
- Different materials NGR, FKM, EPDM

Solenoid voltage
- Prop. solenoid
 - 12V DC, 24V DC
 - Control using proportional amplifier or PLVC

Type PMZ also in an explosion-proof version

Additional elements
- Orifice for oscillation damping in A and B
- Return pressure stop in R

Prop. adjustable nominal pressure difference [bar]

Basic type
- Type PM
- Type PMZ
 - Assembly kit (type PM 1, PMZ 01, PMZ 11)
 - For manifold mounting (type PM 11, PM 12)
 - Version in valve bank (type PMZ) with up to 10 prop. pressure-reducing valve sections

Function

<table>
<thead>
<tr>
<th>Function</th>
<th>PM 1</th>
<th>PM 11</th>
<th>PMZ 1</th>
<th>PM 12</th>
</tr>
</thead>
</table>

Nomenclature:
- Prop. pressure reducing valve

Design:
- Assembly kit
- Individual valve
- Manifold mounting

Adjustment:
- Electro-proportional

p_{max}: 40 bar

p_{max}: 30 bar

Q_{max}: approx. 2 lpm
General parameters and dimensions

<table>
<thead>
<tr>
<th>Design</th>
<th>Pressure range (prop. adjustable nom. pressure difference $\Delta p = p_A - p_R$) [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM 1</td>
<td>Individual valve 0 ... 30</td>
</tr>
<tr>
<td>PM 1, PMZ 01</td>
<td>Twin valve 0 ... 30</td>
</tr>
<tr>
<td>PM 11</td>
<td>Valve for manifold mounting Individual valve 0 ... 30</td>
</tr>
<tr>
<td>PM 12</td>
<td>Twin valve 0 ... 30</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Proportional pressure-reducing valve type PM and PMZ: D 7625

Additional electrical components:
- Proportional amplifier: Page 278
- Programmable logic valve control type PLVC: Page 280
- CAN node type CAN-IO: Page 282
- Other electronic accessories See "Electronics"
Proportional pressure-reducing valves are a type of pressure control valve. They remotely control the pressure in hydraulic systems continually and electrically. The proportional pressure-reducing valve type PDM is a piloted valve with a piston and is controlled electro-proportionally. The valve has an external control oil drain. It continuously maintains a constant pressure on the secondary pressure side, independently of the inlet side. The pressure reducing valve is available as a single valve for pipe connection or as a manifold mounting valve. The proportional pressure-reducing valve PDM is particularly suitable for dynamic control of the pressure level in hydraulic systems.

Features and benefits:
- Integrated overpressure function

Intended applications:
- General hydraulic systems
- Equipment
- Test benches
- Hydraulic tools

Design and order coding example

<table>
<thead>
<tr>
<th>PDMP 2</th>
<th>PDM 4 G</th>
<th>- 43</th>
<th>- G24</th>
</tr>
</thead>
</table>

Solenoid voltage
- Prop. solenoid
 - 12V DC, 24V DC
 - Control using proportional amplifier or PLVC

Pressure range
Pressure ranges for pressure downstream at A

Basic type, size, design
- Type PDM (pipe connection), size 11, 21, 22
- Type PDMP (manifold mounting), size 11, 22
- Type PDM, size 3 to 5
- Pipe connection (G), manifold mounting (P)

Function

PDM
Valve for pipe connection:

Manifold mounting valve:
General parameters and dimensions

<table>
<thead>
<tr>
<th>Valve Type</th>
<th>Q<sub>max</sub> [lpm]</th>
<th>Pressure range p<sub>max</sub> A [bar]</th>
<th>Ports (BSPP)</th>
<th>Leakage flow Q<sub>leak</sub> [lpm]</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDM 11</td>
<td>12</td>
<td>41: 80, 42: 130, 43: 200, 44: 320</td>
<td>G 1/4</td>
<td>< 0.5</td>
<td>101</td>
<td>33</td>
</tr>
<tr>
<td>PDMP 11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>93.5</td>
<td>35</td>
</tr>
<tr>
<td>PDM 21/22</td>
<td>20</td>
<td>41: 45, 42: 70, 43: 110, 44: 180</td>
<td>G 1/4, G 3/8</td>
<td>< 0.5</td>
<td>101</td>
<td>38</td>
</tr>
<tr>
<td>PDMP 22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>96</td>
<td>40</td>
</tr>
<tr>
<td>PDM 3 G</td>
<td>Pilot</td>
<td>40 N: 130, M: 200 H: 350</td>
<td>G 1/2</td>
<td>< 0.8</td>
<td>100</td>
<td>65</td>
</tr>
<tr>
<td>PDM 4 G</td>
<td>80</td>
<td></td>
<td>G 3/4</td>
<td></td>
<td>99.5</td>
<td>71</td>
</tr>
<tr>
<td>PDM 5 G</td>
<td>120</td>
<td></td>
<td>G 1</td>
<td></td>
<td>104.5</td>
<td>73</td>
</tr>
<tr>
<td>PDM 4 P</td>
<td>80</td>
<td></td>
<td>-</td>
<td>-</td>
<td>99.5</td>
<td>78</td>
</tr>
<tr>
<td>PDM 5 P</td>
<td>120</td>
<td></td>
<td>-</td>
<td>-</td>
<td>104.5</td>
<td>81</td>
</tr>
</tbody>
</table>

1) For pipe connection versions

Associated technical data sheets:
- Prop. pressure reducing valves type PDM: D 7486, D 7584/1

Additional electrical components:
- Proportional amplifier: Page 278
- Programmable logic valve control type PLVC: Page 280
- CAN node type CAN-IO: Page 282
- Other electronic accessories See "Electronics"
2.3 Proportional pressure-reducing valve type KFB and FB

Proportional pressure-reducing valves are a type of pressure control valve. They manually and continuously operate hydraulic actuators at a distance.

The proportional pressure-reducing valve type FB is available as a single valve for pipe connection. Type KFB is a valve bank and combines several valves.

The proportional pressure-reducing valve type FB and KFB is primarily used for remote control of the directional spool valve type PSL or PSV.

Features and benefits:
- Sturdy design
- Precise control

Intended applications:
- For control oil supply in pilot circuits

Additional versions:
- With UNF thread

Design and order coding example

<table>
<thead>
<tr>
<th>KFB01</th>
<th>A/19</th>
<th>/F</th>
<th>1</th>
</tr>
</thead>
</table>

Additional elements for actuation
- Without labelling - with hand lever
- 005 - with hand lever bent at an angle of 5°
- 015 - With hand lever bent at an angle of 15°
- 025 - With hand lever bent at an angle of 25°
- 030 - With hand lever bent at an angle of 30°

Manual operation
- F - manual operation with return spring
- FC - detent

Pressure range of prop. pressure-reducing valve
- Pressure ranges
- 4; 5.5; 7; 9; 11; 14; 19; 30

Valve sections
- A - Front section
- M - Middle section
- E - End section

Basic type, size
- Type KFB (valve bank)
- Type FB (single valve)
Function

Single valve

Valve bank

General parameters and dimensions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>H</th>
<th>B</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB 01</td>
<td>KFB 01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{max} [lpm]</td>
<td>p_{max} [bar]</td>
<td>Ports</td>
<td>Dimensions [mm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>G 1/4</td>
<td>215,45</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>G 1/4</td>
<td>215,45</td>
<td>x - 35</td>
<td>50</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Proportional pressure-reducing valve type KFB 01 and FB 01: D 6600-01
Pressure valves

2.3 Pressure-controlled shut-off valve type CNE

Shut-off valves or accumulator charging valves are a type of pressure control valve. They switch the delivery flow of a pump to unpressurised circulation if the pressure value set is reached. During this process the consumer side is separated from the idle circulation by a zero-leakage check valve. If the pressure drops in the consumer side, the idle circulation is interrupted and the oil fed to the consumer again.

Via a control line the higher pressure holds open the pressure-controlled 2 directional valve type CNE and with it the idle circulation. In the low-pressure circuit the valve acts simultaneously as a pressure-limiting valve.

The valve type CNE can be screwed-in and can be integrated into manifolds. The necessary mounting holes are straightforward to make.

Features and benefits:
- Compact design
- Easily produced mounting hole

Intended applications:
- Accumulator systems
- Fixtures

Design and order coding example

<table>
<thead>
<tr>
<th>CNE 2</th>
<th>C</th>
<th>- 50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pressure setting [bar]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure range</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic type, size</th>
<th>Pressure controlled 2-way valve type CNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional versions:</td>
<td></td>
</tr>
<tr>
<td>- Additionally sealed tapped journal to minimize the internal leakage loss (type CNE 21)</td>
<td></td>
</tr>
<tr>
<td>- Additionally sealed tapped journal and piston to minimise leakage loss (type CNE 22 and CNE 23)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nomenclature:</th>
<th>2-way circulation valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design:</td>
<td>Screw-in valve</td>
</tr>
<tr>
<td>Adjustment:</td>
<td>Fixed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_{max}:</th>
<th>500 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{\text{max adjust}}$:</td>
<td>450 bar</td>
</tr>
<tr>
<td>q_{\max}:</td>
<td>30 lpm</td>
</tr>
</tbody>
</table>
Function

CNE

Associated technical data sheets:
- Pressure-controlled shut-off valve type CNE: D 7710 NE

Similar products:
- Two-stage valves type NE: Page 198
- Switch units type CR: Page 154
- Shut-off valves type LV, ALZ: Page 200
- Directional valves type AE: Page 174

General parameters and dimensions

CNE 2

<table>
<thead>
<tr>
<th>Q_{max} [lpm]</th>
<th>Oper. pressure p_{max} [bar] with</th>
<th>Dimensions [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>Z</td>
</tr>
<tr>
<td>CNE 2</td>
<td>30</td>
<td>E: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A: 90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L: 150</td>
</tr>
</tbody>
</table>

CNE 21

CNE 23

CNE 22

Order example: HK448/1-HH..-AN21F2
Circulation valve integrated in connection block type AN 21 F2 for compact hydraulic power packs type HK with two pump circuits
2.3 Two-stage valve type NE

Two-stage valves are a type of pressure control valve. They are used in hydraulic systems that are supplied by dual stage pumps, a combination of high-pressure pump and low-pressure pump.

The two-stage valve type NE combines the two pump delivery flows into a common volumetric flow. It switches the low-pressure pump to unpressurised circulation if the pressure value set is reached. It protects both pumps against exceeding the high or low-pressure value set.

The two-stage valve type NE is used with directional valves to control double-acting hydraulic cylinders.

Features and benefits:
- Operating pressures up to 700 bar
- Direct mounting on hydraulic power packs
- Direct combination with valve control

Intended applications:
- Presses
- Test benches
- Hydraulic tools

Design and order coding example

<table>
<thead>
<tr>
<th>Basic type</th>
<th>Pressure setting [bar]</th>
<th>Additional versions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE 20, 70 and 80</td>
<td>500 ... 700 (HD) / 16 ... 80 (ND) bar</td>
<td>Direct mounting at hydraulic power packs type MP and RZ</td>
</tr>
<tr>
<td>NE 20, 70 and 80</td>
<td>500 ... 700 (HD) / 16 ... 80 (ND) bar</td>
<td>Valve banks type BV can be directly mounted (type NE 21)</td>
</tr>
</tbody>
</table>

Function
General parameters and dimensions

<table>
<thead>
<tr>
<th></th>
<th>(Q_{\text{max}}) [lpm]</th>
<th>(p_{\text{max}}) [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HD</td>
<td>ND</td>
<td>HD</td>
<td>ND</td>
<td>A, R</td>
</tr>
<tr>
<td>NE 20</td>
<td>10</td>
<td>40</td>
<td>20</td>
<td>700</td>
<td>16</td>
</tr>
<tr>
<td>NE 70</td>
<td>16</td>
<td>100</td>
<td>(0)</td>
<td>500</td>
<td>(0)</td>
</tr>
<tr>
<td>NE 80</td>
<td>25</td>
<td>180</td>
<td>(0)</td>
<td>500</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Two-stage valve type NE: D 7161

Pumps:
- Compact hydraulic power packs type MP, MPN, MFW, MPNW: Page 54
- Dual-stage pump type RZ: Page 62

Similar products:
- Idle circulation valves type CNE: Page 196
- (Press) switch units type CR: Page 154
- Directional seated valves type VB: Page 130
Shut-off valve type LV and ALZ

Shut-off valves or accumulator charging valves are a type of pressure control valve. They switch the delivery flow of a pump to unpressurised circulation if the pressure value set is reached. During this process the consumer side is separated from the idle circulation by a zero-leakage check valve. If the pressure drops in the consumer side, the idle circulation is interrupted and the oil fed to the consumer again.

Features and benefits:
- Various adjustment options
- Various additional functions

Intended applications:
- General hydraulic systems
- Test benches

Design and order coding example

<table>
<thead>
<tr>
<th>LV 10 P</th>
<th>D</th>
<th>CR</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALZ 3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pressure setting [bar]
- Fixed (-)
- Manually adjustable (R)

Pressure range
- Type LV, size 10, 20, 25
 - Pipe connection (-)
 - Manifold mounting (P)
 - Design with low switching hysteresis (type LV 25)
- Type ALZ, size 3 to 5
 - Pipe connection (G)
 - Manifold mounting (P)

Function

LV, ALZ

For pipe connection:

![Pipe connection diagram](image)

Manifold mounting valve:

![Manifold mounting diagram](image)

Nomenclature:
- Shut-off valve (idle circulation valve, direct controlled or piloted)

Design:
- Individual valve for pipe connection
- Individual valve
- Manifold mounting

Adjustment:
- Fixed
- Manually adjustable

P_{max}: 350 bar

Q_{max}: 120 lpm
General parameters and dimensions

LV..

<table>
<thead>
<tr>
<th>Control</th>
<th>Q<sub>max</sub> [lpm]</th>
<th>Pressure range: p<sub>max</sub> [bar]</th>
<th>Ports (BSPP)<sup>1</sup></th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV 10</td>
<td>Direct 12</td>
<td>F: 60 E: 140 D: 240 C: 350</td>
<td>G 1/4</td>
<td>155 45 32</td>
<td>0.9</td>
</tr>
<tr>
<td>ALZ 3 G</td>
<td>Piloted 50</td>
<td>F: 60 E: 140 D: 240 C: 350</td>
<td>G 1/2</td>
<td>80 40 99</td>
<td>2.0</td>
</tr>
<tr>
<td>ALZ 4 G</td>
<td>80</td>
<td>F: 60 E: 140 D: 240 C: 350</td>
<td>G 3/4</td>
<td>94 40 109</td>
<td>2.4</td>
</tr>
<tr>
<td>ALZ 5 G</td>
<td>120</td>
<td>F: 60 E: 140 D: 240 C: 350</td>
<td>G 1</td>
<td>105 63 135</td>
<td>4.3</td>
</tr>
<tr>
<td>ALZ 4 P</td>
<td>80</td>
<td>F: 60 E: 140 D: 240 C: 350</td>
<td>G 3/4</td>
<td>60 40 119</td>
<td>2.1</td>
</tr>
<tr>
<td>ALZ 5 P</td>
<td>120</td>
<td>F: 60 E: 140 D: 240 C: 350</td>
<td>G 1</td>
<td>80 40 133</td>
<td>4.3</td>
</tr>
</tbody>
</table>

1) For pipe connection versions only

ALZ..G..

ALZ..P..

Associated technical data sheets:
- Shut-off valve type LV: D 7529
- Shut-off valve type ALZ: D 6170 ALZ
- Pressure valve with check valve type AL, AE and AS: D 6170

Similar products:
- Release valves type AE: Page 174
- Connection blocks type AL: Page 68
Pressure-dependent shut-off valves are a type of pressure control valve. When a set pressure value is reached and exceeded, they block the flow to consumer line B with zero leakage. The valves will open again if the pressure on inflow side A falls below the set value defined by the spring tension. The pressure-dependent shut-off valve type DSV and CDSV is used as a safeguard pressure gauge, for example.

Features and benefits:
- Various adjustment options
- Various additional functions

Intended applications:
- General hydraulic systems
- Test benches
- (Pressure gauge) protection valve

Design and order coding example

<table>
<thead>
<tr>
<th>Code</th>
<th>Model</th>
<th>Design</th>
<th>Pressure setting [bar]</th>
<th>Pressure range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDSV 1</td>
<td>A - 1/4 - 400</td>
<td>Individual valve for pipe connection</td>
<td>600 bar</td>
<td></td>
</tr>
<tr>
<td>DSV 21-1</td>
<td>B - 200</td>
<td>Manifold mounting</td>
<td>60 lpm</td>
<td></td>
</tr>
</tbody>
</table>
Function

CDSV 1, DSV 2

DSVP 2

General parameters and dimensions

CDSV 1
Screw-in valve

DSV 2-2
Version for pipe connection

DSVP 21-1
Manifold mounting valve

<table>
<thead>
<tr>
<th>Design</th>
<th>Size</th>
<th>(Q_{\text{max}}) [lpm]</th>
<th>(P_{\text{max}}) [bar]</th>
<th>Ports (BSPP)</th>
<th>(H_{\text{max}}) [mm]</th>
<th>SW = a/f</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDSV 1</td>
<td>1</td>
<td>10</td>
<td>C: 120</td>
<td>B: 350</td>
<td>A: 600</td>
<td>M 16 x 1.5</td>
<td>69</td>
</tr>
<tr>
<td>DSV 2(^1)</td>
<td>1</td>
<td>20</td>
<td>D: 40</td>
<td>C: 100</td>
<td>B: 220</td>
<td>G 1/4</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>40</td>
<td>D: 20</td>
<td>C: 60</td>
<td>B: 120</td>
<td>G 3/8</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>60</td>
<td>D: 20</td>
<td>C: 60</td>
<td>B: 120</td>
<td>G 1/2</td>
<td>193</td>
</tr>
<tr>
<td>DSVP 2(^1)</td>
<td>1</td>
<td>20</td>
<td>D: 40</td>
<td>C: 100</td>
<td>B: 220</td>
<td>G 1/4</td>
<td>181</td>
</tr>
</tbody>
</table>

1) Manifold mounting valve only in size 1

Associated technical data sheets:
- Pressure-dependent shut-off valve type DSV: D 3990
- Pressure-dependent shut-off valve type CDSV: D 7876
Load-holding valves are a type of pressure control valve. They prevent loads on cylinders or motors dropping in an uncontrolled manner. For this purpose they are pre-loaded with a pressure setting that is higher than the largest possible load. A hydraulic piston controls the opening of the valve to achieve the required lowering velocity.

The load-holding valve type LHK and LHT is suitable for applications without a tendency to large fluctuations. The load-holding valve type LHDV has special damping properties. It is used particularly in conjunction with proportional directional spool valves, e.g. type PSL and PSV.

Shock valves and shuttle valves with or without restrictor check valves can be fitted in the load-holding valve type LHK, LHDV and LHT, e.g. to relieve hydraulic brakes with a delay.

Features and benefits:
- Operating pressures up to 420 bar
- Various adjustment options
- Various configurations

Intended applications:
- Cranes
- Construction machinery
- Lifting devices

Design and order coding example

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| LHK44 | Design: Individual or twin valve for pipe connection
 Design: Screw-in valve
 Design: Version for banjo bolt mounting
 Max.: 450 bar
 Max.: 250 lpm
 Size: 2 to 4
 Release ratio: 1 : 2 and 1 : 7
 Version available as assembly kit |
LHDV33 - 25WD - B 6 -200/200-240/240

<table>
<thead>
<tr>
<th>Pressure setting [bar]</th>
<th>Load-holding pressure/load-holding pressure - shock valve pressure/shock valve pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nozzle</td>
<td>Release ratio may be altered with different orifice combinations in the range between 1 : 1.2 and 1 : 8.9</td>
</tr>
</tbody>
</table>

volumetric flow

Additional elements
- With shock- and suction valves
- With shuttle valves for brakes
- With restrictor check valve

Basic type, size
- Type LHDV (with tailored dampening characteristics), size 3
- Type LHT, size 2, 3 and 5

Additional versions:
- Cartridge valve versions
- Type LHT
- Type LHTE, with discharge pressure compensation

Function

LHK 33 G-15-....

![Diagram of LHK 33 G-15-....]

LHK 44 G-21-....

![Diagram of LHK 44 G-21-....]

LHT 21 H-14-....

![Diagram of LHT 21 H-14-....]

LHT 33 P-11-....

![Diagram of LHT 33 P-11-....]

LHDV 33 G-25WD-....

![Diagram of LHDV 33 G-25WD-....]
General parameters and dimensions

LHK 44 G - 11 - 160

Individual valve

<table>
<thead>
<tr>
<th>Design</th>
<th>Q_{max} [lpm]</th>
<th>p_{max} [bar]</th>
<th>Release ratio</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHK 22</td>
<td>Individual valve</td>
<td>20</td>
<td>400</td>
<td>1 : 4.6</td>
<td>G 3/8</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Twin valve¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>LHK 33</td>
<td>Individual valve</td>
<td>60</td>
<td>360</td>
<td>1 : 4.4</td>
<td>G 1/2</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Twin valve¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125...291</td>
</tr>
<tr>
<td>LHK 44</td>
<td>Individual valve</td>
<td>100</td>
<td>350</td>
<td>1 : 4.4 ²</td>
<td>G 3/4</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Twin valve²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>LHDV 33</td>
<td>Individual valve</td>
<td>80</td>
<td>420</td>
<td>1 : 8...1 : 1.2 ³</td>
<td>G 1/2</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Twin valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>LHT 2</td>
<td>Individual valve</td>
<td>25</td>
<td>400</td>
<td>1 : 8, 1 : 4</td>
<td>G 1/4</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Twin valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>LHT 3</td>
<td>Individual valve</td>
<td>130</td>
<td>450</td>
<td>1 : 7...1 : 0.53 ³</td>
<td>G 1/2</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Twin valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>LHT 5</td>
<td>Individual valve</td>
<td>250</td>
<td>450</td>
<td>1 : 6...1 : 0.79 ³ ³</td>
<td>G 1 ³</td>
<td>113</td>
</tr>
</tbody>
</table>

¹ Release ratio can be altered simply by changing the orifice
² Note: Design may be significantly different to the illustrated version!
Example circuit:

LHDV 33-25-D6-180/180-200
LHDV 33 P-15-D6-280/300
LHDV 33 P-15-D6-280/300
LHK 33 G-21... acc. to D 7100

Associated technical data sheets:
- Load-holding valve type LHK: D 7100
- Load-holding valve type LHDV: D 7770
- Load-holding valve type LHT: D 7918

Additional integrable functions:
- Proportional directional valves type PSL, PSV, PSLF: Page 106
- Proportional directional valves type PSLF, PSVF: Page 112
Flow valves

<table>
<thead>
<tr>
<th>Flow control valve type SF, SD and SK</th>
<th>212</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow control valve (lowering brake valve) type SB, SQ, SJ and DSJ</td>
<td>216</td>
</tr>
<tr>
<td>Proportional flow control valve type SE and SEH</td>
<td>218</td>
</tr>
<tr>
<td>Flow divider type TQ</td>
<td>222</td>
</tr>
<tr>
<td>Priority valve type PV</td>
<td>224</td>
</tr>
<tr>
<td>Restrictors and restrictor check valve type EB, BE, BC</td>
<td>226</td>
</tr>
<tr>
<td>Throttle valve type Q, QR, QV and FG</td>
<td>228</td>
</tr>
<tr>
<td>Throttle valve type ED, restrictor check valve type RD and RDF</td>
<td>230</td>
</tr>
<tr>
<td>Throttle valve and restrictor check valve type CQ, CQR and CQV</td>
<td>232</td>
</tr>
<tr>
<td>Throttle valve and shut-off valve type AV, AVT and CAV</td>
<td>234</td>
</tr>
</tbody>
</table>

Flow control valves

- with electro-proportional actuation type SE and SEH

Throttles

- type Q, QR, QV and FG
Flow control valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>Adjustability</th>
<th>p_{max} (bar)</th>
<th>Q_{max} (lpm)</th>
</tr>
</thead>
</table>
| SF, SD, SK | 2-way and 3-way flow control valve
- Individual valve for pipe connection
- Manifold mounting valve | - Mechanical | SD - 3: 320
SD - 4: 320
SD - 5: 320
SF - 3: 320
SF - 4: 320
SF - 5: 320
SK - 3: 320
SK - 4: 320
SK - 5: 320 | SD - 3: 60
SD - 4: 90
SD - 5: 130
SF - 3: 60
SF - 4: 90
SF - 5: 130
SK - 3: 60
SK - 4: 90
SK - 5: 130 |
| SB, SQ, SJ, DSJ | 2-way metering valve, lowering brake valve
- Cartridge valve
- Version with housing for pipe connection | - fixed | SB - 0: 315
SB - 1: 315
SB - 2: 315
SB - 3: 315
SB - 4: 315
SB - 5: 315
SQ - 0: 315
SQ - 1: 315
SQ - 2: 315
SQ - 3: 315
SJ - 0: 315
DSJ - 1: 315 | SB - 0: 15
SB - 1: 35
SB - 2: 67
SB - 3: 150
SB - 4: 250
SB - 5: 400
SQ - 0: 15
SQ - 1: 25
SQ - 2: 67
SQ - 3: 150
SJ - 0: 15
DSJ - 1: 25 |
| SE, SEH | 2-way and 3-way flow control valve
- Individual valve for pipe connection
- Manifold mounting valve | - Electro-proportional | SE - 3: 320
SE - 4: 320
SEH - 2: 320
SEH - 3: 320
SEH - 4: 320
SEH - 5: 320 | SE - 3: 50
SE - 4: 90
SEH - 2: 30
SEH - 3: 50
SEH - 4: 90
SEH - 5: 120 |

Flow dividers

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>Adjustability</th>
<th>p_{max} (bar)</th>
<th>Q_{max} (lpm)</th>
</tr>
</thead>
</table>
| TQ | Flow dividers
- Individual valve for pipe connection
- Manifold mounting valve | - Non-adjustable | TQ - 3: 350
TQ - 43: 350
TQ - 54: 350 | TQ - 3: 70
TQ - 43: 120
TQ - 54: 200 |
| PV | Priority valve
- Single valve for pump installation | | PV - 5: 250 | PV - 5: 120 |
Orifices, restrictor check valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>(p_{\text{max}}) (bar)</th>
<th>(q_{\text{max}}) (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB, BE, BC</td>
<td>Orifice, restrictor check valve</td>
<td>EB - 0: 500</td>
<td>EB - 0: 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EB - 1: 500</td>
<td>EB - 1: 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EB - 2: 500</td>
<td>EB - 2: 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EB - 3: 500</td>
<td>EB - 3: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EB - 4: 500</td>
<td>EB - 4: 120</td>
</tr>
<tr>
<td></td>
<td>• Plug-in valve</td>
<td>BE - 0: 500</td>
<td>BE - 0: 12</td>
</tr>
<tr>
<td></td>
<td>• Screw-in valves</td>
<td>BE - 1: 500</td>
<td>BE - 1: 25</td>
</tr>
<tr>
<td></td>
<td>• Version with housing for pipe connection</td>
<td>BE - 2: 500</td>
<td>BE - 2: 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE - 3: 500</td>
<td>BE - 3: 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE - 4: 500</td>
<td>BE - 4: 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BC - 1: 700</td>
<td>BC - 1: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BC - 2: 700</td>
<td>BC - 2: 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BC - 3: 500</td>
<td>BC - 3: 60</td>
</tr>
</tbody>
</table>
Throttles and throttle shut-off valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>Adjustability</th>
<th>p_{max} (bar)</th>
<th>Q_{max} (lpm)</th>
</tr>
</thead>
</table>
| Q, QR, QV, FG | Throttle, restrictor check valve
- Screw-in valve
- Individual valve for pipe connection
Angle valve
Banjo bolt
Swivel fitting | - fixed | Q - 20: 400
Q - 30: 400
Q - 40: 400
Q - 50: 400
Q - 60: 315
QR - 20: 400
QR - 30: 400
QR - 40: 400
QR - 50: 400
QR - 60: 315
QV - 20: 400
QV - 30: 400
QV - 40: 400
QV - 50: 400
QV - 60: 315
FG: 320 | Q - 20: 12
Q - 30: 20
Q - 40: 40
Q - 50: 60
Q - 60: 80
QR - 20: 12
QR - 30: 20
QR - 40: 40
QR - 50: 60
QR - 60: 80
QV - 20: 8
QV - 30: 12
QV - 40: 20
QV - 50: 30
QV - 60: 50
FG: 0.8 |
| ED, RD, RDF | Throttle, restrictor check valve
- Individual valve for pipe connection | - With tool, fixed
- Manually adjustable | ED - 11: 500
ED - 21: 500
ED - 31: 500
ED - 41: 500
ED - 51: 500
RD - 11: 500
RD - 21: 500
RD - 31: 500
RD - 41: 500
RD - 51: 500
RDF - 11: 500
RDF - 21: 500
RDF - 31: 500
RDF - 41: 500
RDF - 51: 500 | ED - 11: 15
ED - 21: 35
ED - 31: 60
ED - 41: 100
ED - 51: 150
RD - 11: 15
RD - 21: 35
RD - 31: 60
RD - 41: 100
RD - 51: 150
RDF - 11: 15
RDF - 21: 35
RDF - 31: 60
RDF - 41: 100
RDF - 51: 150 |
| CQ, CQR, CQV | Throttle, restrictor check valve
- Screw-in valve | - fixed | CQ - 2: 700
CQR - 2: 700
CQV - 2: 700
CQ - 2: 50
CQR - 2: 50
CQV - 2: 50 | |
| AV, AVT, CAV | Throttle and shut-off valve
- Individual valve for pipe connection
- Screw-in valve | - fixed, fixed
- Manually adjustable | AV - 2: 500
AV - 3: 400
AV - 1: 500
AV - 2: 500
AV - 6: 630
AV - 8: 630
AV - 10: 630
AV - 12: 630
AVM - 8: 500
AVM - 8L: 315 | AV - 2: 40
AV - 3: 100
CAV - 1: 15
CAV - 2: 25 |
Flow control valves are a type of flow valve. They generate a set constant flow rate, largely independently of the load.

The flow control valve type SD, SF and SK can be freely adjusted with different mechanical actuations. The flow control valve type SD, SF and SK is available as a 2-way and 3-way flow control valve. For type SD, the adjustment is made using the adjusting knob; for type SF using the adjusting screw; and for type SK using the roller actuation. The flow control valve type SD, SF and SK is available as a single valve for pipe connection or as a manifold mounting valve.

Pressure-limiting valves and randomly switchable idle circulation valves are additional options. The flow control valve type SD, SF and SK controls the operating speed of the hydraulic consumers.

Features and benefits:
- Various actuation types
- Can also be combined with bypass check valves
- Precise setting

Intended applications:
- Construction machinery
- Machine tools
- General hydraulic systems

<table>
<thead>
<tr>
<th>Nomenclature:</th>
<th>2-way flow control valve</th>
<th>3-way flow control valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design:</td>
<td>Individual valves for pipe mounting</td>
<td>Manifold mounting</td>
</tr>
<tr>
<td>Adjustment:</td>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Adjusting knob</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Roller actuation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Setting screw</td>
<td></td>
</tr>
<tr>
<td>(P_{\text{max}}):</td>
<td>315 bar</td>
<td></td>
</tr>
<tr>
<td>(Q_{\text{max}}):</td>
<td>6 ... 130 lpm</td>
<td></td>
</tr>
</tbody>
</table>
Design and order coding example

| SF 3 - 3 | /15 | - S | G24 | - 120 |

Pressure setting [bar] of the pressure limiting valve (S)
- Solenoid voltage: G 12, G 24, WG 110 and WG 230
- Mounting and add. valve:
 - Pipe connection (no coding)
 - Manifold mounting (P)
 - Valve with bypass check valve (R, PR)
 - Check valve bridge circuit (B)
 - Pressure-limiting valve (S)
 - Pressure-limiting and circulation valve (S-WN1F, S-WN1D)

Volumetric flow
Flow steps via orifices Q_{max}: 3, 6, 15, 36, 50, 60, 70, 90, 130 lpm

Basic type, design, size
- Type SF, with lock nut, fixed adjustment
- Type SD, with adjusting knob actuation
- Type SK, with roller actuation (open version)
- Type SKR, with roller actuation (closed version, not for manifold mounting)
- Version as 2-way (-2) and 3-way (3) flow control valves
- Size 3 to 5

Function

<table>
<thead>
<tr>
<th>2-way, pipe connection</th>
<th>3-way</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-way, manifold mounting valve</th>
<th>3-way</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actuation:

<table>
<thead>
<tr>
<th>SF ...</th>
<th>SD ...</th>
<th>SK ...</th>
<th>SKR ...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Set screw SW 10
- Adjustment travel: 5 mm
- Adjusting knob
- Adjustment travel: 3.8 turns
- Roller actuation
- Unshielded version (SK), Shielded version (SKR)
- Actuation travel: 15.5 ... 17 mm
- Actuation force: 30 ... 70 N
General parameters and dimensions

Version for pipe connection

<table>
<thead>
<tr>
<th>2-way</th>
<th>3-way</th>
<th>(Q_{\text{max}}) [lpm](^1)</th>
<th>Ports (BSPP)(^2)</th>
<th>Dimensions [mm]</th>
<th>m [kg](^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. 2-3</td>
<td>S. 3-3</td>
<td>0.3 ... 60</td>
<td>G 1/2</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>S. 2-4</td>
<td>S. 3-4</td>
<td>0.3 ... 90</td>
<td>G 3/4</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>S. 2-5</td>
<td>S. 3-5</td>
<td>1.0 ... 130</td>
<td>G 1</td>
<td>70</td>
<td>50</td>
</tr>
</tbody>
</table>

1) Different \(Q_{\text{max}} \) available, see Design and order coding example: "Orifice steps"
2) For pipe connection versions
3) Depending on actuations
Circuit example

<table>
<thead>
<tr>
<th>Position</th>
<th>Number</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>SMK 20-G 1/4-PC</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>DG 364-35</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>SD 2-3/6P</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>20,201 H 00</td>
</tr>
</tbody>
</table>
Flow control valves are a type of flow valve. They generate a set constant flow rate, largely independently of the load.

The flow control valve type SB and SQ is available as a screw-in cartridge, a housing version with pipe connection or as a banjo screw version. Type SB has a slightly inclined characteristic curve for oscillation damping. Type SQ is largely independent of the load.

The freely movable sliding metering orifice enables greater flow in the opposite flow direction. No bypass check valve is therefore required. The flow control valve type SB and SQ is used to control the lowering speed of single-acting consumers.

Features and benefits:
- Oscillation damping and load-independent
- Compact screw-in valve

Intended applications:
- General hydraulic systems
- Industrial trucks
- Lifting equipment

Design and order coding example

<table>
<thead>
<tr>
<th>SB 2</th>
<th>C</th>
<th>-30</th>
</tr>
</thead>
</table>

Response flow [l/min] Desired factory set response flow within the respective range

Design Adjustable or non adjustable version
- Screw-in version (C)
- Version with housing for pipe mounting (E, F, G)

Additional versions
- With metric of UNF-thread
- With thread adaptor
- As banjo bolt and/or with swiveling screw fitting

Adjustment range Adjustable response flow

Basic type, size Type SB, SQ and SJ, size
Type DSJ, flow control function in both directions for double-acting consumers
Function

SB, SQ

![Diagram of SB, SQ](image1)

SJ

![Diagram of SJ](image2)

DSJ

![Diagram of DSJ](image3)

General parameters and dimensions

Screw-in valve ...C

SB, SQ

![Diagram of Screw-in Valve](image4)

SJ

![Diagram of Screw-in Valve](image5)

With housing...G

![Diagram of Valve with Housing](image6)

Coding for adjustment range of the set response flow from ... to ... [lpm] below

<table>
<thead>
<tr>
<th>Port (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 1/4 (A)</td>
<td>39</td>
<td>78</td>
</tr>
<tr>
<td>G 3/8 (A)</td>
<td>43</td>
<td>82</td>
</tr>
<tr>
<td>G 1/2 (A)</td>
<td>49</td>
<td>96</td>
</tr>
<tr>
<td>G 3/4 (A)</td>
<td>61</td>
<td>106</td>
</tr>
<tr>
<td>G 1 (A)</td>
<td>78</td>
<td>145</td>
</tr>
<tr>
<td>G 1 1/4 (A)</td>
<td>94</td>
<td>160</td>
</tr>
</tbody>
</table>

Ports (BSPP)

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>90</th>
<th>G (Series)</th>
<th>L</th>
<th>L1 max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.6...2.5</td>
<td>2.5...4</td>
<td>4...6.3</td>
<td>6.3...10</td>
<td>10...15</td>
<td>G 1/4 (A)</td>
<td>39</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>25...4</td>
<td>4...6.3</td>
<td>6.3...10</td>
<td>10...16</td>
<td>16...25</td>
<td>25...35</td>
<td>G 3/8 (A)</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>16...21</td>
<td>21...28</td>
<td>28...37</td>
<td>37...50</td>
<td>50...67(1)</td>
<td>-</td>
<td>G 1/2 (A)</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>37...50</td>
<td>50...67</td>
<td>67...90</td>
<td>90...120</td>
<td>120...150(2)</td>
<td>-</td>
<td>G 3/4 (A)</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>80...100</td>
<td>100...125</td>
<td>125...160</td>
<td>160...200</td>
<td>200...250</td>
<td>-</td>
<td>G 1 (A)</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>170...200</td>
<td>200...236</td>
<td>236...280</td>
<td>280...335</td>
<td>335...400</td>
<td>-</td>
<td>G 1 1/4 (A)</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>1.0...21.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>G 3/8 (A)</td>
<td>39</td>
<td>78</td>
</tr>
</tbody>
</table>

1) Type SJ 0 without coding: adjust. range 0.25 ... 1.2 l/min
2) Not for type SQ.

Associated technical data sheets:
- Flow control valve (lowering brake valve) type SB and SQ: D 6920
- Flow control valve type SJ – Screw-in valve: D 7395
- Flow control valve type CSJ: D 7736
- Flow control valve type DSJ: D 7825
Flow valves

2.4 Proportional flow control valve type SE and SEH

Proportional flow control valves are a type of flow valve. They generate a constant flow rate independent of the load which can be controlled in an electro-proportional and remote way.

The flow control valve type SE has a directly actuated metering orifice, which has an advantage of approximately Qmin equal to zero in terms of the controllability. The flow control valve type SEH has a piloted metering orifice which is shown to be beneficial in dynamic systems with short reaction times. The flow control valve type SE and SEH is available as a single valve for pipe connection or as a manifold mounting valve.

Pressure-limiting valves and randomly switchable idle circulation valves are additional options. The flow control valve type SE and SEH controls the operating speed of hydraulic consumers.

Features and benefits:
- Electrical control of consumer operating speeds
- Automation of operating cycles

Intended applications:
- Construction machines
- Machine tools
- General hydraulic systems
- Mining machinery

Design and order coding example

<table>
<thead>
<tr>
<th>SE 2-3</th>
<th>/30F</th>
<th>- P</th>
<th>- G24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solenoid voltage</td>
<td>Prop. solenoid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 V DC, 24 V DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controls via prop. amplifier or PLVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and port size</td>
<td>Pipe connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manifold mounting (P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow [lpm]</td>
<td>Nom. flow of the metering orifice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deenergized open</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deenergized closed (coding F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orifice steps Qmax: 3, 6, 10, 15, 22, 30, 36, 50, 70, 90, 120 lpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic type, size</td>
<td>Type SE, with non-piloted metering orifice, size 3, 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type SEH, with piloted metering orifice, size 2 to 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Available as 2- and 3-way flow control valve</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nomenclature:
- 2-way flow control valve
- 3-way flow control valve

Design:
- Individual valve for pipe mounting or Screw-in valve

Adjustment:
- Electro-proportional

pmax: 315 bar
Qmax: 0.1 ... 120 lpm
Function

SE, SEH

2-way
Pipe connection

3-way
Pipe connection

2-way
Manifold mounting valve

3-way
Manifold mounting valve

Additional functions for flow control valves:

2-way flow control valve
- Version with bypass check valve
- Version with check valve in bridge circuit for free selection of the flow direction

3-way flow control valve
- Version with pressure-limiting valve
- Version with pressure-limiting valve and circulation valve (for pipe connection versions only)
- Version with compulsory closed position of the pressure compensator when not actuated type ...FO
- Version with automatic circulation type ...B 0.6

1) No Z port with type SEH 3-2
General parameters and dimensions

SEH

Version for pipe connection

<table>
<thead>
<tr>
<th>Basic type and size</th>
<th>Q_{max} [lpm]1</th>
<th>p_{max} [bar]</th>
<th>Ports (BSPP)2</th>
<th>Dimensions [mm]</th>
<th>m_{max} [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-way SE 2-3</td>
<td>0.3 ... 50</td>
<td>315</td>
<td>G 1/2</td>
<td>H 110 ... 120</td>
<td>B 80 ... 91</td>
</tr>
<tr>
<td>3-way SE 3-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-way SE 2-4</td>
<td>0.6 ... 90</td>
<td>315</td>
<td>G 3/4</td>
<td>H 120 ... 130</td>
<td>B 85 ... 100</td>
</tr>
<tr>
<td>3-way SE 3-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEH 2-2</td>
<td>0.1 ... 36</td>
<td>315</td>
<td>G 3/8</td>
<td>H 115</td>
<td>B 55 ... 70</td>
</tr>
<tr>
<td>SEH 3-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEH 2-33</td>
<td>0.3 ... 50</td>
<td>315</td>
<td>G 1/2</td>
<td>H 92.5</td>
<td>B 80 ... 93</td>
</tr>
<tr>
<td>SEH 3-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- SEH 3-4</td>
<td>0.6 ... 90</td>
<td>315</td>
<td>G 3/4</td>
<td>H 102.5</td>
<td>B 95 ... 100</td>
</tr>
<tr>
<td>- SEH 3-5</td>
<td>1.0 ... 120</td>
<td>315</td>
<td>G 1</td>
<td>H 112.5</td>
<td>B 100</td>
</tr>
</tbody>
</table>

1) Different Q_{max} available, see Design and order coding example: "Orifice steps"
2) For pipe connection versions
3) For manifold mounting versions only
Circuit example

1. SEHD 3-3/30 FP-X 24
2. TQ 4 P-A 5/2
3. EM 31 V-X24
4. EMP 31 S-X 24
5. MVH 6 C
6. EM 31 S-X24
7. SWPN 2-G-X24

Associated technical data sheets:
- Proportional flow control valve type SE and SEH: D 7557/1

Similar products:
- Flow control valves type SD and others: Page 212

Additional electrical components:
- Proportional amplifier: Page 278
- Programmable logic valve control type PLVC: Page 280
- CAN node type CAN-IO: Page 282
- Other electronic accessories See "Electronics"
Flow dividers are a type of metering valve. They divide or add together a total flow rate either evenly or using a fixed ratio. The consumer pressures have no effect.

The flow divider type TQ is, due to its simple design, an economical solution for simple dividing tasks, e.g., if two hydraulic consumers with varying loads supplied from one pump are to be moved simultaneously without interaction.

Intended applications include mobile hydraulics and industrial hydraulics.

Features and benefits:
- Excellent dividing accuracy

Intended applications:
- Steering systems
- Synchronous cylinders

Nomenclature:
- Flow dividers

Design:
- Individual valve for pipe mounting
- Manifold mounting

Adjustment:
- Non-adjustable

p_{max}: 300 ... 350 bar

Q_{max}: 7.5 ... 200 lpm (nom. total flow)

Design and order coding example

```
| TQ 32 | - A | - 2,0 | - 3 |
```

- **Coding Flow indicator**: (A – equal division ratio)

- **Basic type, size**:
 - Pipe connection (no coding)
 - Manifold mounting (P)
 - Type TQ, size 2 to 5

Function

<table>
<thead>
<tr>
<th>TQ</th>
<th>Pipe connection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TQ.P</th>
<th>Manifold mounting valve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General parameters and dimensions

TQ...
Pipe mounting

<table>
<thead>
<tr>
<th></th>
<th>Q_{max} [lpm]</th>
<th>P_{max} [bar]</th>
<th>Ports (BSPP) 1)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TQ 2..</td>
<td>7.5 ... 70</td>
<td>350</td>
<td>G 1/4, G 3/8</td>
<td>G 1/4, G 3/8, G 3/8</td>
<td>79</td>
</tr>
<tr>
<td>TQ 3..</td>
<td>7.5 ... 70</td>
<td>350</td>
<td>G 3/8, G 1/2</td>
<td>G 3/8, G 1/2</td>
<td>85</td>
</tr>
<tr>
<td>TQ 3P</td>
<td>7.5 ... 70</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>79</td>
</tr>
<tr>
<td>TQ 4</td>
<td>80 ... 120</td>
<td>350</td>
<td>G 1/2</td>
<td>G 1/2</td>
<td>110</td>
</tr>
<tr>
<td>TQ 4P</td>
<td>80 ... 120</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>110</td>
</tr>
<tr>
<td>TQ 5</td>
<td>140 ... 200</td>
<td>350</td>
<td>G 3/4</td>
<td>G 3/4</td>
<td>134</td>
</tr>
<tr>
<td>TQ 5P</td>
<td>140 ... 200</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>134</td>
</tr>
</tbody>
</table>

1) For pipe mounting versions only

TQ..P
Manifold mounting

Associated technical data sheets:
- Flow divider type TQ: D 7381
Priority valves are a type of metering valve. They ensure that particularly critical consumers are always adequately supplied with hydraulic oil.

The priority valve type PV divides the pump volumetric flow into two circuits. The one circuit has priority of supply, for example the steering on the vehicle. The other circuit receives the remaining volumetric flow.

The valve is suitable for mounting directly on the hydraulic pump.

Features and benefits:
- Oscillation damping
- Compact mounted valve
- No additional pipework

Intended applications:
- Machines for forestry and agricultural purposes
- Industrial trucks
- Construction machines
- Municipal trucks

Nomenclature:
- Priority valve

Version:
- Single valve for pump installation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{max}</td>
<td>250 bar</td>
</tr>
<tr>
<td>Q_{max}</td>
<td>120 l/min</td>
</tr>
</tbody>
</table>

Design and order coding example

<table>
<thead>
<tr>
<th>PV 12</th>
<th>P-3</th>
<th>D 4</th>
<th>- EF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orifice diameter</td>
<td>Differential pressure setting</td>
<td>Version</td>
<td>Layout and connections</td>
</tr>
</tbody>
</table>

Basic type, size
Function

General parameters and dimensions

Single valve

<table>
<thead>
<tr>
<th>Ports</th>
<th>Dimensions [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>EF</td>
</tr>
<tr>
<td>PV 12</td>
<td>G 1</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Variable displacement axial piston pump type V30E: D 7960 E
- Variable displacement axial piston pump type V40M: D 7961
- Variable displacement axial piston pump type V60N: D 7960 N
- Fixed displacement axial piston pump type K60N: D 7960 K
- Proportional directional spool valve, type PSL and PSV size 2: D 7700-2
- Proportional directional spool valve, type PSL, PSM and PSV size 3: D 7700-3
Restrictors are a type of flow valve. They are used as a local flow resistance that suddenly reduces the line cross-section. The reduction in the cross-section is very short. As a result the flow rate is only dependent on the pressure difference and not on the viscosity.

The restrictor check valve type BE and BC combines the function of a metering valve with a check valve. The valve is available as a perforated restrictor or as a slotted restrictor. It limits the volumetric flow during the switching of directional valves. E.g. it limits the volumetric flow or prevents excessively quick accumulator emptying.

The orifice insert type EB is primarily used in valves for manifold mounting. As such an additional intermediate plate is not necessary.

Features and benefits:
- Max. 700 bar
- Simple design and installation

Intended applications:
- General hydraulics
- Winch controls
- Hydraulic pilot systems

<table>
<thead>
<tr>
<th>Design and order coding example</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1</td>
</tr>
</tbody>
</table>

Design with housing For pipe connection, type BC, BE (E; F, G)

Orifice Hole or slot type orifice, diameter in mm

Basic type, size
- Type BC, size 1 to 3
- Type BE, size 1 to 4
- Type EB, size 0 to 4, Orifice insert

Additional versions
- Type BC and BE with metric thread

Function

<table>
<thead>
<tr>
<th>BC</th>
<th>BE</th>
<th>EB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw-in valve</td>
<td></td>
<td>Orifice insert</td>
</tr>
</tbody>
</table>

Nomenclature: Orifice

Design: Orifice insert

p_{max}: 700 bar

Q_{max}: 120 l/min
General parameters and dimensions

BC..

Screw-in valve

BE ..

Orifice insert

<table>
<thead>
<tr>
<th>Q<sub>max</sub> [l/min]</th>
<th>p<sub>max</sub> [bar]</th>
<th>Thread</th>
<th>Dimensions</th>
<th>m [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H [mm]</td>
<td>G / D</td>
<td>SW = a/f</td>
</tr>
<tr>
<td>BC 1</td>
<td>20</td>
<td>700</td>
<td>G 1/4 A</td>
<td>13</td>
</tr>
<tr>
<td>BC 2</td>
<td>35</td>
<td>700</td>
<td>G 3/8 A</td>
<td>15</td>
</tr>
<tr>
<td>BC 3</td>
<td>60</td>
<td>500</td>
<td>G 1/2 A</td>
<td>18</td>
</tr>
<tr>
<td>BE 0</td>
<td>12</td>
<td>500</td>
<td>G 1/8 A</td>
<td>5</td>
</tr>
<tr>
<td>BE 1</td>
<td>25</td>
<td>500</td>
<td>G 1/4 A</td>
<td>6</td>
</tr>
<tr>
<td>BE 2</td>
<td>40</td>
<td>500</td>
<td>G 3/8 A</td>
<td>7</td>
</tr>
<tr>
<td>BE 3</td>
<td>70</td>
<td>450</td>
<td>G 1/2 A</td>
<td>7.5</td>
</tr>
<tr>
<td>BE 4</td>
<td>120</td>
<td>400</td>
<td>G 3/4 A</td>
<td>9</td>
</tr>
<tr>
<td>EB 0</td>
<td>6</td>
<td>500</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>EB 1</td>
<td>10</td>
<td>700</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>EB 2</td>
<td>40</td>
<td>700</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>EB 3</td>
<td>100</td>
<td>500</td>
<td>-</td>
<td>11.5</td>
</tr>
<tr>
<td>EB 4</td>
<td>120</td>
<td>500</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Restrictor check valve type BC - Screw-in valve; D 6969 B
- Restrictor check valve type BE - Screw-in valve; D 7555 B
- Orifice type EB: D 6465

Similar products:
- Insert check valves type RK, RB, RC, RE, ER: Page 240

- Restrictor check valves type RD, ED, RDF: Page 230
Flow valves

2.4 Throttle valve type Q, QR, QV and FG

Throttle valves are a type of flow valve. They affect the flow rate for single and double-acting consumers.

The throttle valve type Q and the restrictor check valve type QR and QV are, as slotted throttles, insensitive to micro contamination.

The valve type Q, QR, QV and FG can be integrated into control blocks or into the pipework as a banjo screw version.

Features and benefits:
- Different installation options
- Simple design

Intended applications:
- General hydraulic systems

<table>
<thead>
<tr>
<th>Nomenclature:</th>
<th>Throttle Restrictor check valves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design:</td>
<td>Cartridge Individual valve for pipe mounting</td>
</tr>
<tr>
<td></td>
<td>Corner housing Banjo bolt Swivel fitting</td>
</tr>
<tr>
<td>Adjustment:</td>
<td>Tool adjustable</td>
</tr>
<tr>
<td>p_{max}:</td>
<td>300 400 bar</td>
</tr>
<tr>
<td>Q_{max}:</td>
<td>0 ... 80 lpm</td>
</tr>
</tbody>
</table>

Design and order coding example

<table>
<thead>
<tr>
<th>QR</th>
<th>20</th>
<th>- H 6</th>
<th>K</th>
</tr>
</thead>
</table>

Version with housing
- Without labelling as a screw-in valve
- Available as a banjo bolt and/or with swivel fitting

Basic type, size, function
- Throttles type Q, type QR, type QV and precision throttles type FG, subdivided into 5 sizes
- Throttle direction and free flow direction function
- Slot-type throttles, available with or without built-in check valve

Diagram of devices:

<table>
<thead>
<tr>
<th>FG</th>
<th>Throttle screw</th>
<th>Banjo bolt</th>
<th>Swivel fitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Throttle screw</td>
<td>Banjo bolt</td>
<td>Swivel fitting</td>
</tr>
</tbody>
</table>
Function

FG, Q

![Diagram](FG.png)

FG 1, QR

![Diagram](FG1.png)

FG2, QV

![Diagram](FG2.png)

General parameters and dimensions

<table>
<thead>
<tr>
<th>FG, FG1, FG2</th>
<th>Q\textsubscript{max} [lpm](^1)</th>
<th>p\textsubscript{max} [bar]</th>
<th>Dimensions</th>
<th>m [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG, FG1, FG2</td>
<td>0,15</td>
<td>300</td>
<td>H [mm]: 30, G: M 8, SW = a/f: SW 4, SW = a/f 1: SW 13</td>
<td>15</td>
</tr>
<tr>
<td>Q20, QR20, QV20</td>
<td>12</td>
<td>400</td>
<td>H [mm]: 32, G: M 8 x 1, SW = a/f: SW 4, SW = a/f 1: SW 13</td>
<td>15</td>
</tr>
<tr>
<td>Q30, QR30, QV30</td>
<td>25</td>
<td>400</td>
<td>H [mm]: 36, G: M 10 x 1, SW = a/f: SW 5, SW = a/f 1: SW 17</td>
<td>25</td>
</tr>
<tr>
<td>Q40, QR40, QV40</td>
<td>50</td>
<td>400</td>
<td>H [mm]: 41, G: M 12 x 1.5, SW = a/f: SW 6, SW = a/f 1: SW 19</td>
<td>40</td>
</tr>
<tr>
<td>Q50, QR50, QV50</td>
<td>90</td>
<td>400</td>
<td>H [mm]: 46, G: M 14 x 1.5, SW = a/f: SW 8, SW = a/f 1: SW 22</td>
<td>55</td>
</tr>
<tr>
<td>Q 60, QR60, QV60</td>
<td>120</td>
<td>315</td>
<td>H [mm]: 58, G: M 16 x 1.5, SW = a/f: SW 10, SW = a/f 1: SW 24</td>
<td>100</td>
</tr>
</tbody>
</table>

\(^1\) The values apply to a fully opened valve (observe red marking) and a back pressure of approx. 50 bar (in a throttled direction)

Associated technical data sheets:
- Throttle valve and throttle check valve type Q, QR and QV: D 7730
- Throttle valve and throttle check valve type FG: D 7275

Similar products:
- Throttle valves type CQ, CQR, CQV: Page 232
- Throttle and restrictor check valves
 Typ ED, RD, RDF: Page 230
- Restrictor check valves and orifice inserts
 Typ EB, BE, BC: Page 226
Flow valves

2.4 Throttle valve type ED, restrictor check valve type RD and RDF

Throttle valves are a type of flow valve. They affect the flow rate for single and double-acting consumers. The valve type ED, RD and RDF can be integrated directly in the line.

Features and benefits:
- Sensitively adjustable
- Wear-resistant

Intended applications:
- General hydraulic systems

Nomenclature:
- Throttle restrictor check valves

Design:
- Individual valve for pipe mounting
- Screw-in valve

Adjustment:
- Manually adjustable (handle, adjusting knob)
- Fixed

Fixed throttles
- Diameter in mm, type RDF
 - 0.4 - 0.6 (in increments of 0.1)
 - 0.8 - 2.0 (in increments of 0.2)
 - 2.5 - 5.5 (in increments of 0.5)

Adjustability
- Type ED and RD only
- Without labelling = manually (wing bolt/lock nut)
- K = tool adjustable (setting spindle/lock nut)

Basic type, size
- Type ED, type RD, type RDF, size 1 to 5
- Slot-type throttles, available with or without built-in check valve

Function

Design and order coding example

<table>
<thead>
<tr>
<th>RD 11</th>
<th>RDF 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>/1,0</td>
<td>- K</td>
</tr>
</tbody>
</table>

- Type ED and RD only
- Without labelling = manually (wing bolt/lock nut)
- K = tool adjustable (setting spindle/lock nut)

<table>
<thead>
<tr>
<th>Design and order coding example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomenclature: Throttle restrictor check valves</td>
</tr>
<tr>
<td>Design: Individual valve for pipe mounting Screw-in valve</td>
</tr>
<tr>
<td>Adjustment: Manually adjustable (handle, adjusting knob) Fixed</td>
</tr>
<tr>
<td>p_{max}: 500 bar</td>
</tr>
<tr>
<td>Q_{max}: 12...130 lpm</td>
</tr>
</tbody>
</table>
General parameters and dimensions

ED.. and RD..

<table>
<thead>
<tr>
<th></th>
<th>Q_{max} [lpm]</th>
<th>p_{max} [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 11..</td>
<td>12</td>
<td>500</td>
<td>G 1/4</td>
<td>H 23.5</td>
<td>B 52</td>
</tr>
<tr>
<td>RD 11..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDF 11/..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 21..</td>
<td>30</td>
<td>500</td>
<td>G 3/8</td>
<td>H 24</td>
<td>B 52</td>
</tr>
<tr>
<td>RD 21..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDF 21/..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 31..</td>
<td>60</td>
<td>500</td>
<td>G 1/2</td>
<td>H 32.5</td>
<td>B 62</td>
</tr>
<tr>
<td>RD 31..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDF 31/..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 41..</td>
<td>80</td>
<td>500</td>
<td>G 3/4</td>
<td>H 41</td>
<td>B 72</td>
</tr>
<tr>
<td>RD 41..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDF 41/..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED 51..</td>
<td>130</td>
<td>500</td>
<td>G 1</td>
<td>H 46.5</td>
<td>B 82</td>
</tr>
<tr>
<td>RD 51..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDF 51/..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) The throttle diameter with type RDF can be only altered by replacing the orifice. Depending on size, diameters between 0.6 and 4 mm are available.

2) These figures correspond to completely opened throttle and represent a back pressure of approx. 50 bar (throttled direction of flow)

Associated technical data sheets:

- Throttle and restrictor check valves
 - Typ ED, RD, RDF: [D 7540, D 2570](#)

Similar products:

- Throttle valves type Q, QR, QV, FG: [Page 228](#)
- Throttle valves type CQ, CQR, CQV: [Page 232](#)
- Restrictor check valves type EB, BE, BC: [Page 226](#)
Throttle valves are a type of flow valve. They affect the flow rate for single and double-acting consumers.

The throttle valve type CQ and the restrictor check valve type CQR and CQV are, as slotted throttles, insensitive to micro contamination. The restrictor check valve combines the function of a flow valve with a check valve. It regulates in one flow direction and permits free flow in the other direction. The double spindle sealing enables leakage-free adjustment, even under pressure.

The valve type CQ, CQR and CQV can be screwed-in and can be integrated into control blocks. The necessary mounting holes are straightforward to make.

Features and benefits:
- Leak-free adjustment under pressure
- Operating pressure up to 700 bar

Intended applications:
- Speed regulation in hydraulic lifting devices

Nomenclature:
- Throttle valves
- Restrictor check valves

Design:
- Screw-in valve

Adjustment:
- Tool adjustable
- Manually

\[p_{max} \] 700 bar

\[Q_{max} \] 50 lpm

Design and order coding example

<table>
<thead>
<tr>
<th>CQV 2</th>
<th>D</th>
<th>1/4</th>
</tr>
</thead>
</table>

Single connection blocks
- For pipe connection (1/4, 3/8)
- Manifold mounting (in combination with type CQ and CQV only)

Adjustability in operation
- Without labelling = Fixed
- D = Turn knob (with lock nut)
- D3 = Turn knob, diameter 35 mm (without lock nut)

Basic type, size
- Type CQ, type CQR, type CQV, size 2
- Slot-type throttles, available with or without built-in check valve
 - Version with precision control range (size 22)
 - Version with pressure compensator (flow control function)
Function

CQ 2, CQ 22

CQR 2, CQR 22

CQV 2, CQV 22

CQ 2 - P - DW

General parameters and dimensions

<table>
<thead>
<tr>
<th></th>
<th>CQ 2 / CQ 22</th>
<th>CQR 2 / CQR 22</th>
<th>CQV 2 / CQV 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{max}</td>
<td>50 / 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{max}</td>
<td>700</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Throttle valve and throttle check valve type CQ, CQR and CQV: [D 7713](#)

Similar products:
- Throttle and restrictor check valves
 - Typ ED, RD, RDF: [Page 230](#)
- Throttle valves type Q, QR, QV, FG: [Page 228](#)
Throttle and shut-off valves are a type of metering valve. With the aid of these valves a pressure drop can be established between the inlet and outlet side. In this way the velocity of cylinders in accumulator circuits and the flow rate in control circuits can be regulated or a consumer line completely shut-off (e.g. to protect a pressure gauge).

The throttle and shut-off valve type AV and AVT produces a throttle effect by means of an annular gap. The valve type CAV, as a slotted throttle, is insensitive to micro contamination.

The valve type AV is available as a screw-in valve or valve for pipe connection. The type AVT is mounted in a T-housing and commercially available pipe screw connections permit direct pipe connection. The valve type CAV can be screwed-in and can be integrated into manifolds. The necessary mounting holes are straightforward to make.

Features and benefits:
- Various configurations
- Sensitive adjustment and complete shut off possible

Intended applications:
- General hydraulic systems

Design and order coding example

<table>
<thead>
<tr>
<th>AV 3AVT 10</th>
<th>CAV 1V</th>
<th>- K</th>
<th>- 1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread size</td>
<td>Version with connection block for pipe connection (type CAV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Means of adjustment</td>
<td>Fixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic type, size</td>
<td>Type AV, size 2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type AVT, size 6... 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type CAV, size 1, 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Function

- AV, AV.E, AVT, CAV
- CAV..R
- CAV..V, AV..R, AV..RE
General parameters and dimensions

AV.. Valve for pipe connection

AVT.. Screw-in valve

CAV.. Screw-in valve

AV..E Screw-in valve

-associated technical data sheets:
 - Shut-off valve type AVT and AVM: D 7690
 - Throttle valve and shut-off valve type AV: D 4583
 - Throttle valve and shut-off valve CAV: D 7711

-similar products:
 - Throttle and restrictor check valves
 Typ ED, RD, RDF: Page 230
 - Throttle valves type Q, QR, OV, FG: Page 228

<table>
<thead>
<tr>
<th></th>
<th>Q_{\text{max}} [lpm]</th>
<th>p_{\text{max}} [bar]</th>
<th>Port size</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 2</td>
<td>40</td>
<td>500</td>
<td>G 1/2 (BSPP)</td>
<td>145 - -</td>
<td>45</td>
</tr>
<tr>
<td>AV 3</td>
<td>100</td>
<td>400</td>
<td>G 3/4 (BSPP)</td>
<td>198 - -</td>
<td>60</td>
</tr>
<tr>
<td>AV 2E</td>
<td>40</td>
<td>500</td>
<td>M 28 x 1.5</td>
<td>- 115 25 - -</td>
<td>SW 36 -</td>
</tr>
<tr>
<td>AV 3E</td>
<td>100</td>
<td>400</td>
<td>M 40 x 1.5</td>
<td>- 143 38 - -</td>
<td>SW 46 -</td>
</tr>
<tr>
<td>AVT 6</td>
<td>12</td>
<td>630</td>
<td>6 mm</td>
<td>91 - - 31 - -</td>
<td>-</td>
</tr>
<tr>
<td>AVT 8</td>
<td>25</td>
<td>630</td>
<td>8 mm</td>
<td>94 - - 32 - -</td>
<td>-</td>
</tr>
<tr>
<td>AV 10</td>
<td>30</td>
<td>630</td>
<td>10 mm</td>
<td>94 - - 34 - -</td>
<td>-</td>
</tr>
<tr>
<td>AVT 12</td>
<td>50</td>
<td>630</td>
<td>12 mm</td>
<td>114 - - 38 - -</td>
<td>-</td>
</tr>
<tr>
<td>CAV 1</td>
<td>30</td>
<td>500</td>
<td>M 16 x 1.5</td>
<td>- 42 19 - -</td>
<td>SW 17 SW 22</td>
</tr>
<tr>
<td>CAV 2</td>
<td>50</td>
<td>500</td>
<td>M 20 x 1.5</td>
<td>- 51 21 - -</td>
<td>SW 22 SW 24</td>
</tr>
</tbody>
</table>

1) The values apply to a back pressure of approx. 10 bar (in a throttled direction)
Check valves

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check valve type RK, RB, RC, RE and ER</td>
<td>240</td>
</tr>
<tr>
<td>Check valve type CRK and CRB</td>
<td>242</td>
</tr>
<tr>
<td>Check valve type B</td>
<td>244</td>
</tr>
<tr>
<td>Releasable check valve type CRH and RHC</td>
<td>246</td>
</tr>
<tr>
<td>Releasable check valve type HRP</td>
<td>248</td>
</tr>
<tr>
<td>Releasable check valve type RH and DRH</td>
<td>250</td>
</tr>
<tr>
<td>Check valve and pre-fill valve type F</td>
<td>252</td>
</tr>
<tr>
<td>Line rupture protection valve type LB</td>
<td>254</td>
</tr>
<tr>
<td>Shuttle valve type WV and WVC</td>
<td>256</td>
</tr>
</tbody>
</table>
Check valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Design</th>
<th>p_{max} (bar)</th>
<th>q_{max} (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RK, RB, RC, RE, ER</td>
<td>Check valve</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insert valve</td>
<td>RK - 0: 700</td>
<td>RK - 0: 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RK - 1: 700</td>
<td>RK - 1: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RK - 2: 700</td>
<td>RK - 2: 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RK - 3: 500</td>
<td>RK - 3: 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RK - 4: 500</td>
<td>RK - 4: 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RK - 6: 420</td>
<td>RK - 6: 400</td>
</tr>
<tr>
<td></td>
<td>Plug-in valve</td>
<td>RB - 0: 700</td>
<td>RB - 0: 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RB - 1: 700</td>
<td>RB - 1: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RB - 2: 700</td>
<td>RB - 2: 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RB - 3: 500</td>
<td>RB - 3: 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RB - 4: 500</td>
<td>RB - 4: 120</td>
</tr>
<tr>
<td></td>
<td>Combination with housing for in-line installation</td>
<td>RC - 1: 700</td>
<td>RC - 1: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RC - 2: 700</td>
<td>RC - 2: 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RC - 3: 500</td>
<td>RC - 3: 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RE - 0: 500</td>
<td>RE - 0: 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RE - 1: 500</td>
<td>RE - 1: 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RE - 2: 500</td>
<td>RE - 2: 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RE - 3: 450</td>
<td>RE - 3: 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RE - 4: 400</td>
<td>RE - 4: 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RE - 01: 500</td>
<td>RE - 01: 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RE - 11: 500</td>
<td>RE - 11: 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RE - 12: 500</td>
<td>RE - 12: 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RE - 13: 500</td>
<td>RE - 13: 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RE - 21: 500</td>
<td>RE - 21: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RE - 31: 500</td>
<td>RE - 31: 65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RE - 41: 400</td>
<td>RE - 41: 120</td>
</tr>
<tr>
<td>CRK, CRB</td>
<td>Check valve</td>
<td>CRK - 1: 500</td>
<td>CRK - 1: 30</td>
</tr>
<tr>
<td></td>
<td>Screw-in valve</td>
<td>CRK - 2: 500</td>
<td>CRK - 2: 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRK - 3: 500</td>
<td>CRK - 3: 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRB - 1: 500</td>
<td>CRB - 1: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRB - 2: 500</td>
<td>CRB - 2: 30</td>
</tr>
<tr>
<td>B</td>
<td>Check valve</td>
<td>B - 1: 500</td>
<td>B - 1: 15</td>
</tr>
<tr>
<td></td>
<td>Single valve for in-line installation</td>
<td>B - 2: 500</td>
<td>B - 2: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B - 3: 500</td>
<td>B - 3: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B - 4: 500</td>
<td>B - 4: 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B - 5: 500</td>
<td>B - 5: 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B - 6: 500</td>
<td>B - 6: 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B - 7: 500</td>
<td>B - 7: 160</td>
</tr>
</tbody>
</table>
Releasable check valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Design</th>
<th>Actuation</th>
<th>P_{max} (bar)</th>
<th>Q_{max} (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRH, RHC</td>
<td>Releasable check valve
• Screw-in valve</td>
<td>- Hydraulic</td>
<td>CRH - 1: 500</td>
<td>CRH - 1: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRH - 2: 500</td>
<td>CRH - 2: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRH - 3: 500</td>
<td>CRH - 3: 55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RHC - 1: 700</td>
<td>RHC - 1: 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RHC - 2: 700</td>
<td>RHC - 2: 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RHC - 3: 700</td>
<td>RHC - 3: 55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RHC - 4: 500</td>
<td>RHC - 4: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RHC - 5: 600</td>
<td>RHC - 5: 150</td>
</tr>
<tr>
<td>HRP</td>
<td>Releasable check valve
• Manifold mounting valve</td>
<td>- hydraulic - electro-hydraulic</td>
<td>HRP - 1: 700</td>
<td>HRP - 1: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HRP - 2: 700</td>
<td>HRP - 2: 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HRP - 3: 500</td>
<td>HRP - 3: 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HRP - 4: 500</td>
<td>HRP - 4: 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HRP - 5: 500</td>
<td>HRP - 5: 140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HRP - 7: 500</td>
<td>HRP - 7: 400</td>
</tr>
<tr>
<td>RH, DRH</td>
<td>Releasable check valve
• Single valve for in-line installation
• Manifold mounting valve</td>
<td>- Hydraulic</td>
<td>RH - 1: 700</td>
<td>RH - 1: 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RH - 2: 700</td>
<td>RH - 2: 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RH - 3: 500</td>
<td>RH - 3: 55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RH - 4: 500</td>
<td>RH - 4: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RH - 5: 500</td>
<td>RH - 5: 160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DRH - 1: 500</td>
<td>DRH - 1: 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DRH - 2: 500</td>
<td>DRH - 2: 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DRH - 3: 400</td>
<td>DRH - 3: 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DRH - 4: 400</td>
<td>DRH - 4: 90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DRH - 5: 400</td>
<td>DRH - 5: 140</td>
</tr>
</tbody>
</table>
Pre-fill valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Design</th>
<th>Actuation</th>
<th>(p_{\text{max}}) (bar)</th>
<th>(q_{\text{max}}) (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Releasable check valve (pre-fill valve)</td>
<td>- Hydraulic</td>
<td>F - 25: 400</td>
<td>F - 25: 100</td>
</tr>
<tr>
<td></td>
<td>· Valve in wafer design</td>
<td></td>
<td>F - 32: 400</td>
<td>F - 32: 160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F - 40: 400</td>
<td>F - 40: 250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F - 50: 400</td>
<td>F - 50: 400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F - 63: 400</td>
<td>F - 63: 630</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F - 80: 400</td>
<td>F - 80: 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F - 100: 400</td>
<td>F - 100: 1600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F - 125: 400</td>
<td>F - 125: 2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F - 160: 400</td>
<td>F - 160: 4000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F - 200: 400</td>
<td>F - 200: 7000</td>
</tr>
</tbody>
</table>

Line rupture safety valve, shuttle valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Design</th>
<th>Adjustability</th>
<th>(p_{\text{max}}) (bar)</th>
<th>(q_{\text{max}}) (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>Line rupture safety valve</td>
<td>- fixed</td>
<td>LB - 1: 500</td>
<td>LB - 1: 25</td>
</tr>
<tr>
<td></td>
<td>· Screw-in valve</td>
<td></td>
<td>LB - 2: 500</td>
<td>LB - 2: 50</td>
</tr>
<tr>
<td></td>
<td>· Combination with housing for in-line</td>
<td></td>
<td>LB - 3: 500</td>
<td>LB - 3: 80</td>
</tr>
<tr>
<td></td>
<td>installation</td>
<td></td>
<td>LB - 4: 500</td>
<td>LB - 4: 160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LB - 5: 300</td>
<td>LB - 5: 250</td>
</tr>
<tr>
<td>WV, WVC</td>
<td>Shuttle valve</td>
<td></td>
<td>WV - 6 S: 700</td>
<td>WV - 6 S: 6</td>
</tr>
<tr>
<td></td>
<td>· Single valve for in-line installation</td>
<td></td>
<td>WV - 8 S: 700</td>
<td>WV - 8 S: 15</td>
</tr>
<tr>
<td></td>
<td>· Screw-in valve</td>
<td></td>
<td>WV - 10 S: 500</td>
<td>WV - 10 S: 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WV - 12 S: 500</td>
<td>WV - 12 S: 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WV - 16 S: 500</td>
<td>WV - 16 S: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WV - 18 L: 315</td>
<td>WV - 18 L: 160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WVC - 1: 315</td>
<td>WVC - 1: 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WVC - 11: 500</td>
<td>WVC - 11: 6</td>
</tr>
</tbody>
</table>
Check valves

2.5 Check valve type RK, RB, RC, RE and ER

Check valves are a type of non-return valve. They block the oil flow in one direction and open in the opposite direction. In the closed state they have zero leakage.

The check valve type RK, RB, RC and RE can be screwed-in, type ER can be plugged-in. The spring-loaded ball check valve type RK, RB and ER is very robust and insensitive to soiling.

The spring-loaded plate valve type RC can be screwed-in in any direction and is particularly suitable for fast switching sequences. Type RE is a plate valve without a spring.

Type ER can be integrated directly in valves for manifold mounting. As such an additional intermediate plate is not necessary for the check valve function. Type RE is suitable for isolating pressurising loads or as a foot valve for a pump suction line.

Features and benefits:
- Operating pressures up to 700 bar
- Easily machined mounting holes
- Sturdy

Intended applications:
- General hydraulic systems
- Hydraulic pre-loading

Design and order coding example

| Design with housing | For pipe connection (E, F, G), type RK, RB and RC

Basic type, size
- Check valve installation
 - type RK, RB, size 0 ... 6
 - Type RC, size 1 ... 3
 - Type RE, size 0 ... 4
 - Type RE, ER (check valve insert), size 0 to 4

Additional versions:
- Type RK with increased open-up pressure
- Type ER, stainless (size 01 ... 31)
- Type RK, RB, RC and RE with metric thread
- Type RV, RB with KWF thread

Function

<table>
<thead>
<tr>
<th>RK</th>
<th>RB</th>
<th>ER</th>
<th>RC</th>
<th>RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball seated valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shim type valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General parameters and dimensions

<table>
<thead>
<tr>
<th></th>
<th>Q<sub>max</sub> [lpm]</th>
<th>p<sub>max</sub> [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RK 0/RB 0</td>
<td>10</td>
<td>700</td>
<td>G 1/8 A</td>
<td>7.2/7.9</td>
<td>SW 5</td>
</tr>
<tr>
<td>RK 1/RB 1</td>
<td>20</td>
<td>700</td>
<td>G 1/4 A</td>
<td>9/10.3</td>
<td>SW 7</td>
</tr>
<tr>
<td>RK 2/RB 2</td>
<td>50</td>
<td>700</td>
<td>G 3/8 A</td>
<td>11.2/11.7</td>
<td>SW 6</td>
</tr>
<tr>
<td>RK 3/RB 3</td>
<td>80</td>
<td>500</td>
<td>G 1/2 A</td>
<td>13.5/13.2</td>
<td>SW 8</td>
</tr>
<tr>
<td>RK 4/RB 4</td>
<td>120</td>
<td>500</td>
<td>G 3/4 A</td>
<td>17.5/17.5</td>
<td>SW 12</td>
</tr>
<tr>
<td>RK 6</td>
<td>400</td>
<td>420</td>
<td>G 1 1/4</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>RC 1</td>
<td>20</td>
<td>700</td>
<td>G 1/4 A</td>
<td>13</td>
<td>SW 4</td>
</tr>
<tr>
<td>RC 2</td>
<td>35</td>
<td>700</td>
<td>G 3/8 A</td>
<td>15</td>
<td>SW 5</td>
</tr>
<tr>
<td>RC 3</td>
<td>60</td>
<td>500</td>
<td>G 1/2 A</td>
<td>18</td>
<td>SW 8</td>
</tr>
<tr>
<td>RE 0</td>
<td>12</td>
<td>500</td>
<td>G 1/8 A</td>
<td>5</td>
<td>SW 4</td>
</tr>
<tr>
<td>RE 1</td>
<td>25</td>
<td>500</td>
<td>G 1/4 A</td>
<td>6</td>
<td>SW 5</td>
</tr>
<tr>
<td>RE 2</td>
<td>40</td>
<td>500</td>
<td>G 3/8 A</td>
<td>7</td>
<td>SW 8</td>
</tr>
<tr>
<td>RE 3</td>
<td>70</td>
<td>450</td>
<td>G 1/2 A</td>
<td>7.5</td>
<td>SW 10</td>
</tr>
<tr>
<td>RE 4</td>
<td>120</td>
<td>400</td>
<td>G 3/4 A</td>
<td>9</td>
<td>SW 12</td>
</tr>
<tr>
<td>ER 0</td>
<td>6</td>
<td>500</td>
<td>G 1/8 A</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>ER 1</td>
<td>12</td>
<td>500</td>
<td>G 1/4 A</td>
<td>5.6</td>
<td>8.6/6.5</td>
</tr>
<tr>
<td>ER 2</td>
<td>30</td>
<td>500</td>
<td>G 3/8 A</td>
<td>8</td>
<td>14/10.5</td>
</tr>
<tr>
<td>ER 3</td>
<td>65</td>
<td>500</td>
<td>G 1/2 A</td>
<td>10</td>
<td>17/13</td>
</tr>
<tr>
<td>ER 4</td>
<td>120</td>
<td>400</td>
<td>G 3/4 A</td>
<td>17.5</td>
<td></td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Check valve type ER and EK - Plug-in valve: [D 7325](#)
- Check valve type RE: [D 7555 R](#)
- Check valve type RC: [D 6969 R](#)
- Check valve type RK and RB: [D 7445](#)

Similar products:
- Check valves type CRK, CRB: [Page 242](#)
- Check valves type B: [Page 244](#)
Check valves

2.5 Check valve type CRK and CRB

Check valves are a type of non-return valve. They block the oil flow in one direction and open in the opposite direction. In the closed state they have zero leakage. The check valve type CRK and CRB can be screwed-in and can be integrated into control blocks. The necessary mounting holes are straightforward to make.

Features and benefits:
- Screw-in valves

Intended applications:
- General hydraulic systems

Design and order coding example

<table>
<thead>
<tr>
<th>CRK 2</th>
<th>- 1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual connection block for pipe connection</td>
<td></td>
</tr>
</tbody>
</table>

Basic type
- Check valves type CRK and CRB, size 1 to 3
 - With/without tapped plug
 - With/without tapped blockage/plug combination

<table>
<thead>
<tr>
<th>Design and order coding example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomenclature: Check valve</td>
</tr>
<tr>
<td>Design: Screw-in valve</td>
</tr>
<tr>
<td>p_{max}: 500 bar</td>
</tr>
<tr>
<td>Q_{max}: 30 ... 80 lpm</td>
</tr>
</tbody>
</table>
Function

CRK

CRB

General parameters and dimensions

CRK, CRB

<table>
<thead>
<tr>
<th>Function</th>
<th>CRK</th>
<th>CRB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Check valve type CRK, CRB and CRH: D 7712

Similar products:
- Check valves type RK, RB, RC, RE, ER: Page 240

<table>
<thead>
<tr>
<th></th>
<th>Q(_\text{max}) [lpm]</th>
<th>p(_\text{max}) [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions</th>
<th>m [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRK 1 / CRB 1</td>
<td>30</td>
<td>500</td>
<td>M 16 x 1.5</td>
<td>H [mm]</td>
<td>SW 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW 1</td>
<td>SW 8</td>
</tr>
<tr>
<td>CRK 2 / CRB 2</td>
<td>50</td>
<td></td>
<td>M 20 x 1.5</td>
<td>H [mm]</td>
<td>SW 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW 1</td>
<td>SW 10</td>
</tr>
<tr>
<td>CRK 3</td>
<td>80</td>
<td></td>
<td>M 24 x 1.5</td>
<td>H [mm]</td>
<td>SW 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW 1</td>
<td>SW 12</td>
</tr>
</tbody>
</table>

www.hawe.de | 2016

11-2015-4.4 - Check valve type CRK and CRB
Check valves are a type of non-return valve. They block the oil flow in one direction and open in the opposite direction. In the closed state they have zero leakage.

The check valve type B is available in different housing forms and is suitable for direct in-line installation.

The check valve type B is suitable for usage as a foot valve for a pump suction line due to the low opening pressure.

Features and benefits:
- Flow up to 160 l/min
- Pipe installation

Intended applications:
- General hydraulic systems

Design and order coding example

B 1 - 2

Basic type, with housing, size
Check valve type B, version with housing 1 to 3, size 1 to 7

Additional versions:
- Open-up pressure 3 bar

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Check valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Individual valve for in-line installation</td>
</tr>
<tr>
<td>(p_{\text{max}})</td>
<td>500 bar</td>
</tr>
<tr>
<td>(Q_{\text{max}})</td>
<td>15 ... 160 lpm</td>
</tr>
</tbody>
</table>
Function

B

General parameters and dimensions

Basic type | Size | Q_{max} [lpm] | p_{max} [bar] | Ports (BSPP) | Dimensions | m [kg]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B 1</td>
<td>-1</td>
<td>15</td>
<td>500</td>
<td>G 1/4 G 1/4 A</td>
<td>50 ... 60 SW 19</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>20</td>
<td></td>
<td>G 3/8 G 3/8 A</td>
<td>58 ... 67 SW 24</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>30</td>
<td></td>
<td>G 1/2 G 1/2 A</td>
<td>60 ... 66 SW 27</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>-4</td>
<td>45</td>
<td></td>
<td>G 3/4 G 3/4 A</td>
<td>70 ... 78 SW 36</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>75</td>
<td></td>
<td>G 1 G 1 A</td>
<td>94 ... 114 SW 41</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>-6</td>
<td>120</td>
<td></td>
<td>G 1 1/4 G 1 1/4 A</td>
<td>110 ... 130 SW 55</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>160</td>
<td></td>
<td>G 1 1/2 G 1 1/2 A</td>
<td>115 ... 136 SW 60</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Check valve type B: D 1191

Similar products:
- Check valves type RK, RB, RC, RE, ER: Page 240
Check valves

2.5 Releasable check valve type CRH and RHC

Check valves with hydraulic release are a type of check valve. They block one or both hydraulic consumer lines or are used as a hydraulically actuated drain or circulation valve. Check valve type CRH and RHC has zero leakage when closed. It can be screwed-in and can be integrated into control blocks. The necessary mounting holes are straightforward to make. Check valve type CRH and RHC is available with hydraulic release. Hydraulic release suppresses relief surges that can occur at high pressure and with a large consumer volume.

Features and benefits:
- Screw-in cartridge
- Pressures up to 700 bar
- Flows up to 200 l/min
- Sturdy

Intended applications:
- Industrial hydraulics
- Construction machines

Design and order coding example

<table>
<thead>
<tr>
<th>CRH 3</th>
<th>V</th>
</tr>
</thead>
</table>
| Function | Without pre-release (-)
Without pre-release (V) |
| Basic type, size | Releasable check valve
type CRH, size 1 to 3
type RHC, size 1 to 6 |

Additional versions:
- With increased release ratio (approx. 4.2 : 1)
- With sealed tapped journal and control piston
- With hydraulic relieve of the control piston (type RHCE)
General parameters and dimensions

CRH

<table>
<thead>
<tr>
<th>CRH</th>
<th>Q_{max} [lpm]</th>
<th>p_{max} [bar]</th>
<th>p_a / p_z</th>
<th>Ports (BSPP)</th>
<th>L [mm]</th>
<th>SW = a/f 1</th>
<th>SW = a/f 2</th>
<th>m [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRH 1</td>
<td>30</td>
<td>500</td>
<td>2.6</td>
<td>M 16 x 1.5</td>
<td>47</td>
<td>SW 8</td>
<td>SW 22</td>
<td>60</td>
</tr>
<tr>
<td>CRH 2</td>
<td>50</td>
<td>500</td>
<td>2.6</td>
<td>M 20 x 1.5</td>
<td>53</td>
<td>SW 10</td>
<td>SW 24</td>
<td>90</td>
</tr>
<tr>
<td>CRH 3</td>
<td>80</td>
<td>500</td>
<td>2.5</td>
<td>M 24 x 1.5</td>
<td>61</td>
<td>SW 12</td>
<td>SW 30</td>
<td>150</td>
</tr>
<tr>
<td>RHC 1</td>
<td>15</td>
<td>700</td>
<td>2.6</td>
<td>M 16 x 1.5</td>
<td>32</td>
<td>SW 6</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>RHC 2</td>
<td>25</td>
<td>700</td>
<td>2.6</td>
<td>M 20 x 1.5</td>
<td>37.5</td>
<td>SW 8</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>RHC 3</td>
<td>55</td>
<td>700</td>
<td>2.5</td>
<td>M 24 x 1.5</td>
<td>47</td>
<td>SW 10</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>RHC 4</td>
<td>100</td>
<td>500</td>
<td>2.5</td>
<td>M 30 x 1.5</td>
<td>56</td>
<td>SW 12</td>
<td>-</td>
<td>140</td>
</tr>
<tr>
<td>RHC 5</td>
<td>150</td>
<td>500</td>
<td>2.8</td>
<td>M 36 x 1.5</td>
<td>67.5</td>
<td>SW 14</td>
<td>-</td>
<td>250</td>
</tr>
<tr>
<td>RHC 6</td>
<td>200</td>
<td>500</td>
<td>2.5</td>
<td>M 42 x 1.5</td>
<td>97</td>
<td>SW 19</td>
<td>-</td>
<td>500</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- **Releasable check valves**
 - Check valve type CRK, CRB and CRH: D 7712
 - Releasable check valve type RHC and RHCE: D 7165

Similar products:
- Type HRP: Page 248
- Type RH: Page 250
Check valves

2.5 Releasable check valve type HRP

Check valves with hydraulic release are a type of check valve. They block one or both hydraulic consumer lines or are used as a hydraulically actuated drain or circulation valve. In the closed state the check valve type HRP has zero leakage. A leakage line relieves the rear of the control piston. Due to this separate relief the control behaviour of the valve is independent of the pressure in the return. A solenoid valve can be optionally flange-mounted to arbitrarily control the check valve with the load pressure on the consumer side. The check valve type HRP is available with a hydraulic release. Hydraulic release suppresses relief surges that can occur at high pressure and with a large consumer volume.

Features and benefits:
- Manifold mounting valve for pressures up to 700 bar
- Flows up to 400 lpm
- Electrically controlled
- With hydraulic release for smooth switching

Intended applications:
- Industrial and mobile hydraulics

Design and order coding example

<table>
<thead>
<tr>
<th>HRP 4</th>
<th>V - B 0,4 - WH 1 H B 0,4-G24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optionally with directly mounted 3/2-way directional seated valve</td>
</tr>
<tr>
<td></td>
<td>Optionally with orifice insert at control port Z</td>
</tr>
<tr>
<td>Function</td>
<td>Without pre-release (-)</td>
</tr>
<tr>
<td></td>
<td>With pre-release (V)</td>
</tr>
<tr>
<td>Basic type, size</td>
<td>Check valve with hydraulic release HRP, size 1 to 7</td>
</tr>
<tr>
<td>P_{max}</td>
<td>700 ... 500 bar</td>
</tr>
<tr>
<td>Q_{max}</td>
<td>20 ... 400 lpm</td>
</tr>
</tbody>
</table>
Function

HRP

![Diagram of HRP check valve]

Associated technical data sheets:
- Releasable check valve type HRP: D 5116

Similar products:
- Releasable check valves type RH: Page 250
- Releasable check valve type RHV: D 3056
- Releasable check valves type CRH, RHC: Page 246
- Releasable twin check valves type DRH: Page 250

General parameters and dimensions

HRP

![Diagram showing dimensions and release ratio]

<table>
<thead>
<tr>
<th>Q_{max} [lpm]</th>
<th>p_{max} [bar]</th>
<th>Release ratio p_A / p_Z</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRP 1</td>
<td>20</td>
<td>2.9</td>
<td>74.5</td>
<td>0.25</td>
</tr>
<tr>
<td>HRP 2</td>
<td>35</td>
<td>3.9</td>
<td>78</td>
<td>0.4</td>
</tr>
<tr>
<td>HRP 3</td>
<td>50</td>
<td>4.3</td>
<td>83</td>
<td>0.7</td>
</tr>
<tr>
<td>HRP 4</td>
<td>80</td>
<td>3.8</td>
<td>103.5</td>
<td>1.2</td>
</tr>
<tr>
<td>HRP 5</td>
<td>140</td>
<td>4.0</td>
<td>120.5</td>
<td>1.9</td>
</tr>
<tr>
<td>HRP 7 V</td>
<td>400</td>
<td>3.0</td>
<td>190</td>
<td>8.0</td>
</tr>
</tbody>
</table>

HRP 1

- Q_{max} [lpm]: 20
- p_{max} [bar]: 700
- Release ratio p_A / p_Z: 2.9
- Dimensions [mm]:
 - H: 20
 - B: 25
 - L: 74.5
- m [kg]: 0.25

HRP 2

- Q_{max} [lpm]: 35
- p_{max} [bar]: 700
- Release ratio p_A / p_Z: 3.9
- Dimensions [mm]:
 - H: 25
 - B: 30
 - L: 78
- m [kg]: 0.4

HRP 3

- Q_{max} [lpm]: 50
- p_{max} [bar]: 500
- Release ratio p_A / p_Z: 4.3
- Dimensions [mm]:
 - H: 35
 - B: 35
 - L: 83
- m [kg]: 0.7

HRP 4

- Q_{max} [lpm]: 80
- p_{max} [bar]: 500
- Release ratio p_A / p_Z: 3.8
- Dimensions [mm]:
 - H: 35
 - B: 50
 - L: 103.5
- m [kg]: 1.2

HRP 5

- Q_{max} [lpm]: 140
- p_{max} [bar]: 500
- Release ratio p_A / p_Z: 4.0
- Dimensions [mm]:
 - H: 40
 - B: 60
 - L: 120.5
- m [kg]: 1.9

HRP 7 V

- Q_{max} [lpm]: 400
- p_{max} [bar]: 500
- Release ratio p_A / p_Z: 3.0
- Dimensions [mm]:
 - H: 63
 - B: 100
 - L: 190
- m [kg]: 8.0
Check valves

2.5 Releasable check valve type RH and DRH

Check valves with hydraulic release are a type of check valve. They block one or both hydraulic consumer lines or are used as a hydraulically actuated drain or circulation valve. In the closed state the check valve type RH and DRH has zero leakage. The type DRH is a twin check valve for double-acting consumers.

The check valve type RH and DRH is available with a hydraulic release. Hydraulic release suppresses relief surges that can occur at high pressure and with a large consumer volume.

Features and benefits:
- Pressures up to 700 bar
- with hydraulic release for smooth switching

Intended applications:
- Blocking of leak-free hydraulic cylinders
- Return flow relief
- Hydraulically actuated drain or circulation valve

Nomenclature:
- Check valve with hydraulic release or twin check valve

Design:
- Individual valve for
 - Pipe connection
 - Manifold mounting

Adjustment:
- Hydraulic

P_{max}: 400...700 bar
Q_{\max}: 15...160 lpm

Design and order coding example

<table>
<thead>
<tr>
<th>RH 3 V</th>
</tr>
</thead>
</table>
| Function | Without pre-release (-)
 | With pre-release (V) |
| Basic type, size | Releasable check valve RH, size 1 to 5 |

| DRH 3 LSS | - 30 /100 |
|-----------|
| Pre-charge pressure [bar] |
| Pressure setting [bar] |
| Basic type, size, function | Releasable double check valve DRH, size 1 to 5 |

Additional versions:
- With pre-release (one or both sides)
- With shock valves (for hydraulic motors)
- With safety valve preventing slow pressure rises
- With leakage port preventing unintended open-up when pressure migrated from the control side
- Manifold mounting version (type DRH3P)
Function

RH

- **DRH**

General parameters and dimensions

RH

- **DRH**

<table>
<thead>
<tr>
<th>Q<sub>max</sub> [lpm]</th>
<th>P<sub>max</sub> [bar]</th>
<th>Release ratio P<sub>A(B)</sub>/P<sub>Z</sub></th>
<th>Tapped ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH 1</td>
<td>15</td>
<td>700</td>
<td>2.7</td>
<td>A, B, C, D</td>
<td>Z</td>
</tr>
<tr>
<td>RH 2</td>
<td>35</td>
<td>700</td>
<td>3</td>
<td>G 1/4</td>
<td></td>
</tr>
<tr>
<td>RH 3</td>
<td>55</td>
<td>500</td>
<td>2.4</td>
<td>G 1/2</td>
<td></td>
</tr>
<tr>
<td>RH 4</td>
<td>100</td>
<td>500</td>
<td>2.4</td>
<td>G 3/4</td>
<td></td>
</tr>
<tr>
<td>RH 5</td>
<td>160</td>
<td>500</td>
<td>3</td>
<td>G 1</td>
<td></td>
</tr>
</tbody>
</table>

DRH

- **DRH**

<table>
<thead>
<tr>
<th>Q<sub>max</sub> [lpm]</th>
<th>P<sub>max</sub> [bar]</th>
<th>Release ratio P<sub>A(B)</sub>/P<sub>Z</sub></th>
<th>Tapped ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRH 1</td>
<td>16</td>
<td>500</td>
<td>G 1/4</td>
<td>L = 70</td>
<td>a = 45</td>
</tr>
<tr>
<td>DRH 2</td>
<td>30</td>
<td>500</td>
<td>G 3/8</td>
<td>L = 89</td>
<td>a = 60</td>
</tr>
<tr>
<td>DRH 3</td>
<td>60</td>
<td>500</td>
<td>2.5</td>
<td>G 1/2</td>
<td>L = 115</td>
</tr>
<tr>
<td>DRH 4</td>
<td>90</td>
<td>400</td>
<td>G 3/4</td>
<td>L = 150</td>
<td>a = 70</td>
</tr>
<tr>
<td>DRH 5</td>
<td>140</td>
<td>400</td>
<td>G 1</td>
<td>L = 195</td>
<td>a = 80</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Releasable check valve type RH: D 6105
- Releasable twin check valve type DRH: D 6110

Similar products:
- Releasable check valve type RHV: D 3056
- Type CRH and RHC: Page 242
- Type HRP: Page 248
Check valves and pre-fill valve type F

Check valves and pre-fill valves are a type of non-return valve. Check valves block the oil flow in one direction and open in the other. Pre-fill valves are check valves with hydraulic release. They are used, e.g. in top ram presses for suction and emptying the press cylinder on rapid closing and opening.

The check valve and pre-fill valve type F is a spring-loaded disk valve and has zero leakage in the closed state. The valve is attached directly to the cylinder and clamped between the base of the cylinder and the welding-neck flange. Alternatively the valve is installed in the line between the front faces of the welding-neck flanges.

The valve type F is available with hydraulic release. Hydraulic release suppresses relief surges that can occur at high pressure and with a large consumer volume.

Features and benefits:
- Wafer design
- Extremely large flows, up to 7000 l/min

Intended applications:
- Press control systems
- Injection moulding machines

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Check valve</th>
<th>Check valve with hydraulic release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Intermediate section between pipe flanges</td>
<td></td>
</tr>
<tr>
<td>Actuation</td>
<td>Hydraulic</td>
<td></td>
</tr>
<tr>
<td>(p_{\text{max}}):</td>
<td>400 bar</td>
<td></td>
</tr>
<tr>
<td>(q_{\text{max}}):</td>
<td>100 ... 7000 lpm</td>
<td></td>
</tr>
</tbody>
</table>

Design and order coding example

F25

Basic type, size
Check valve type F, size 25 to 200

F80B-36 V

Additional versions: Without pre-release (-)
With pre-release (V), size 25 to 80

Basic type, size
Pre-fill valves type F, size 25 to 200

Additional functions
- With holes in the mounting flange (B)

Function

Check valve

Pre-fill valve
General parameters and dimensions

Basic type and size

<table>
<thead>
<tr>
<th>Check valve</th>
<th>Pre-fill valve</th>
<th>(Q_{\text{max}}) [lpm]</th>
<th>(p_{\text{max}}) [bar]</th>
<th>Release ratio (p_x / p_z)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 25</td>
<td>F 25-12</td>
<td>100</td>
<td>4.3</td>
<td>83</td>
<td>26, 36</td>
<td>43</td>
</tr>
<tr>
<td>F 32</td>
<td>F 32-16</td>
<td>160</td>
<td>3.6</td>
<td>93</td>
<td>27, 45</td>
<td>55</td>
</tr>
<tr>
<td>F 40</td>
<td>F 40-20</td>
<td>250</td>
<td>3.9</td>
<td>108</td>
<td>28, 48.5</td>
<td>60</td>
</tr>
<tr>
<td>F 50</td>
<td>F 50-25</td>
<td>400</td>
<td>4.2</td>
<td>128</td>
<td>29, 59</td>
<td>72</td>
</tr>
<tr>
<td>F 63</td>
<td>F 63(B)-30</td>
<td>630</td>
<td>4.2</td>
<td>143</td>
<td>33.5, 69</td>
<td>83</td>
</tr>
<tr>
<td>F 64</td>
<td>F 64-30</td>
<td>760</td>
<td>4.2</td>
<td>143</td>
<td>33.5, 69</td>
<td>83</td>
</tr>
<tr>
<td>F 80</td>
<td>F 80(B)-36</td>
<td>1000</td>
<td>4.5</td>
<td>169</td>
<td>38.5, 83</td>
<td>97.5</td>
</tr>
<tr>
<td>F 81</td>
<td>F 81-36</td>
<td>1200</td>
<td>4.5</td>
<td>169</td>
<td>38.5, 83</td>
<td>97.5</td>
</tr>
<tr>
<td>F 100</td>
<td>F 100(B)-45</td>
<td>1600</td>
<td>4.3</td>
<td>212</td>
<td>44, 97</td>
<td>118</td>
</tr>
<tr>
<td>F 101</td>
<td>F 101-45</td>
<td>1920</td>
<td>4.3</td>
<td>212</td>
<td>44, 97</td>
<td>118</td>
</tr>
<tr>
<td>F 125</td>
<td>F 125(B)-60</td>
<td>2500</td>
<td>4.3</td>
<td>248</td>
<td>51, 127</td>
<td>155</td>
</tr>
<tr>
<td>F 160</td>
<td>F 160-76</td>
<td>4000</td>
<td>4.3</td>
<td>310</td>
<td>70, 182</td>
<td>233</td>
</tr>
<tr>
<td>F 200</td>
<td>F 200-100</td>
<td>7000</td>
<td>4.0</td>
<td>420</td>
<td>150, 250</td>
<td>300</td>
</tr>
</tbody>
</table>

Associated technical data sheets:

- Check valve and pre-fill valve type F: D 6960
Check valves

2.5 Line rupture protection valve type LB

Line rupture protection valves, also called pipe rupture protection valves, are a type of check valve. The valves are normally mounted directly on the cylinder. They prevent uncontrolled cylinder movement in the event of a pipe rupture or hose break.

The line rupture protection valve type LB offers a high level of safety in the event of pressure peaks. It features reproducibly accurate, secure closing at the pre-set trigger volumetric flow. Higher volumetric flows cause a plate raised from the valve seat by a spring to be pressed onto the housing seat. The valve closes. A variant with orifice bore in the valve plate permits a low volumetric flow in the check direction. Type LB is available as a screw-in valve and in a housing design for line installation.

The line rupture protection valve type LB is used in industrial vehicles, lifting platforms and lifting equipment.

Features and benefits:
- Pressures up to 700 bar

Intended applications:
- Industrial trucks
- Lifting devices

Design and order coding example

<table>
<thead>
<tr>
<th>LB 2</th>
<th>G 1,0</th>
<th>- 25</th>
</tr>
</thead>
</table>

Response flow [lpm] Trigger volumetric flow Q_A in l/min

With/without orifice Orifice diameter 0.5 / 0.8 / 1.0 / 1.2 / 1.5 / 2 (dep. on type and size)

Design
- Screw-in valve (C)
- Design with housing (F, G)
- Fitting

Basic type, size: Line rupture safety valve type LB, size 2 to 4
- Version with imperial thread
- Version with metric thread
- Design with UNF thread

Function

LB
Simplified Series

F —— W —— B

With orifice

Detailed

F —— W —— B
General parameters and dimensions

LB ..C
Screw-in valve

LB ..G
Valve with housing

LB ..F

<table>
<thead>
<tr>
<th>Q_{\text{max}} [lpm]</th>
<th>p_{\text{max}} [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [g]^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>G1</td>
<td>L</td>
</tr>
<tr>
<td>LB 1 (C, G, F)</td>
<td>4 ... 25</td>
<td>500</td>
<td>G 1/4 (A)</td>
<td>-</td>
</tr>
<tr>
<td>LB 11 C)</td>
<td>4 ... 25</td>
<td>700</td>
<td>G 1/4 (A)</td>
<td>-</td>
</tr>
<tr>
<td>LB 2 (C, G, F)</td>
<td>6.3 ... 50</td>
<td>500</td>
<td>G 3/8 (A)</td>
<td>-</td>
</tr>
<tr>
<td>LB 21 C)</td>
<td>6.3 ... 45</td>
<td>700</td>
<td>G 3/8 (A)</td>
<td>-</td>
</tr>
<tr>
<td>LB 3 (C, G, F)</td>
<td>16 ... 80</td>
<td>500</td>
<td>G 1/2 (A)</td>
<td>-</td>
</tr>
<tr>
<td>LB 4 (C, G, F)</td>
<td>25 ... 160</td>
<td>500</td>
<td>G 3/4 (A)</td>
<td>-</td>
</tr>
<tr>
<td>LB 3 E</td>
<td>4 ... 160</td>
<td>500</td>
<td>G 1/4 A - G 3/4 A</td>
<td>M18x1.5 - M36x2</td>
</tr>
<tr>
<td>LB 4 E</td>
<td>80 ... 200</td>
<td>300</td>
<td>G 1</td>
<td>-</td>
</tr>
</tbody>
</table>

1) Mounting thread, additionally sealed
2) Dimensions for insert valve and/or housing version

Associated technical data sheets:
- [Line rupture protection valve type LB: D 6990](#)
- [Line rupture safety valves type LB.E as a screw joint: Sk 6990 E](#)
Check valves

2.5 Shuttle valve type WV and WVC

Shuttle valves are a type of check valve. They have two inlets and one outlet. As soon as a pressure signal is present on at least one of the two inlets, an outlet signal is generated. The inlet with the higher pressure is automatically connected to the outlet. The other inlet with lower pressure is blocked by a ball (OR operator).

The shuttle valve type WV is integrated in a T-fitting for pipe connection. The type WVC is a screw-in valve. The shuttle valves can withstand pressures up to 700 bar and have low flow resistances.

They can be used for transmitting control pressures or control and operating volumetric flows.

Features and benefits:
- Pressures up to 700 bar
- Insert and housing versions

Intended applications:
- In load-sensing systems
- Often in mobile hydraulics
- Construction and construction materials machinery
- Cranes and lifting equipment
- Road vehicle

Naming:
- Shuttle valve

Design:
- Individual valve for pipe mounting
- Valve insert
- Screw-in valve

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{\max})</td>
<td>700 bar</td>
</tr>
<tr>
<td>(Q_{\max})</td>
<td>6 ... 150 lpm</td>
</tr>
</tbody>
</table>

Design and order coding example

<table>
<thead>
<tr>
<th>WV 10</th>
<th>- S</th>
</tr>
</thead>
</table>

Design
- High pressure version (S)
- Low pressure version (L)

Basic type, size
Type WV for pipe connection, size 6 to 18
Type WVC and WVH as cartridge valve, size 1

www.hawe.de | 2016
Function

WV, WVC, WVH

Inlet

Outlet

General parameters and dimensions

<table>
<thead>
<tr>
<th>WV</th>
<th>WVC</th>
<th>WVH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WV

- **Function**: WV, WVC, WVH
- **Inlet**:
- **Outlet**:

General parameters and dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>Q(_{\text{max}}) [lpm]</th>
<th>P(_{\text{max}}) [bar]</th>
<th>External pipe (\varnothing) [mm]</th>
<th>Mounting thread</th>
<th>Dimensions [mm]</th>
<th>m [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>WV 6 - S</td>
<td>6</td>
<td>700</td>
<td>6</td>
<td>--</td>
<td>62</td>
<td>31</td>
</tr>
<tr>
<td>WV 8 - S</td>
<td>15</td>
<td>8</td>
<td>--</td>
<td>--</td>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>WV 10 - S</td>
<td>25</td>
<td>10</td>
<td>12</td>
<td>--</td>
<td>68</td>
<td>34</td>
</tr>
<tr>
<td>WV 12 - S</td>
<td>40</td>
<td>14</td>
<td>--</td>
<td>--</td>
<td>76</td>
<td>38</td>
</tr>
<tr>
<td>WV 14 - S</td>
<td>60</td>
<td>16</td>
<td>18</td>
<td>--</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>WV 16 - S</td>
<td>100</td>
<td>18</td>
<td>18</td>
<td>--</td>
<td>86</td>
<td>43</td>
</tr>
<tr>
<td>WV 18 - L</td>
<td>150</td>
<td>315</td>
<td>18</td>
<td>--</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>WVC 1</td>
<td>6</td>
<td>--</td>
<td>M 10 x 1</td>
<td>--</td>
<td>16</td>
<td>SW 5</td>
</tr>
<tr>
<td>WVH 1</td>
<td>3</td>
<td>700</td>
<td>--</td>
<td>M 10 x 1</td>
<td>--</td>
<td>28.5</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- [Shuttle valve type WV and WVC: D 7016](#)

Similar products:
- [Shuttle valves type WVH: Sk 7962](#)
<table>
<thead>
<tr>
<th>Hydraulic cylinders and hydrostatic motors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic clamps type HSE and HSA</td>
</tr>
<tr>
<td>Axial piston motor type M60N</td>
</tr>
<tr>
<td>Hydraulic cylinders</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>HSE, HSA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HSE - 12: 500</td>
</tr>
<tr>
<td>HSE - 16: 500</td>
</tr>
<tr>
<td>HSE - 20: 500</td>
</tr>
<tr>
<td>HSE - 24: 500</td>
</tr>
<tr>
<td>HSA - 32: 500</td>
</tr>
<tr>
<td>HSA - 40: 500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydrostatic motors</th>
<th>Nomenclature/Design</th>
<th>p_{max} (bar)</th>
<th>V_{max} (cm3/rev.)</th>
</tr>
</thead>
</table>
Hydraulic clamping cylinder generate a pressure-controlled clamping force at the piston. Without pressure the clamping pistons return to their initial position. The clamping cylinder type HSE is a screw-in cylinder. The type HSA is a screw-on cylinder. Very high forces can be transmitted in a very small space in fixtures. The clamping cylinder type HSE and HSA is used in machine tools, machining centres and chucks for clamping, fasten, lock or fix workpieces, tools or machine structures.

Features and benefits:
- Compact design
- Operating pressure up to 500 bar

Intended applications:
- Clamping systems
- Securing systems
- Machine tools

Design and order coding example

<table>
<thead>
<tr>
<th>HSE 24</th>
<th>-15</th>
</tr>
</thead>
</table>

Stroke [mm] Stroke H

Basic type, piston diameter [mm] Screw-in version type HSE

Manifold mounting version type HSA

<table>
<thead>
<tr>
<th>Nomenclature:</th>
<th>Hydraulic clamps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design:</td>
<td>Screw-in version</td>
</tr>
<tr>
<td></td>
<td>Manifold mounting</td>
</tr>
<tr>
<td>p_{max}:</td>
<td>500 bar</td>
</tr>
<tr>
<td>F_{max}:</td>
<td>60000 N</td>
</tr>
</tbody>
</table>
Function

HSE, HSA

![Hydraulic clamp](image)

General parameters and dimensions

HSE ..

Hydraulic screw-in clamps

- **Ports**: 500 bar
- **Dimensions** (mm): H 20 x 1.5, H1 20.5 ... 32.5, SW 24, A 0.05 ... 0.08

HSA ..

Manifold mounting hydraulic clamps

- **Ports**: 500 bar
- **Dimensions** (mm): H 20 x 1.5, H1 20.5 ... 32.5, SW 24, A 0.05 ... 0.08

<table>
<thead>
<tr>
<th>Q_{max} [lpm]</th>
<th>Stroke [mm]</th>
<th>F_{max} [N]</th>
<th>Ports</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>with 500 bar</td>
<td>H</td>
<td>H1</td>
</tr>
<tr>
<td>HSE 12</td>
<td>500</td>
<td>2 ... 8</td>
<td>5500</td>
<td>M 20 x 1.5</td>
<td>20.5 ... 32.5</td>
</tr>
<tr>
<td>HSE 16</td>
<td>3 ... 12</td>
<td>10000</td>
<td>M 24 x 1.5</td>
<td>26.5 ... 41.5</td>
<td>-</td>
</tr>
<tr>
<td>HSE 20</td>
<td>4 ... 20</td>
<td>15000</td>
<td>M 30 x 1.5</td>
<td>28.5 ... 56</td>
<td>-</td>
</tr>
<tr>
<td>HSE 24</td>
<td>5 ... 20</td>
<td>23000</td>
<td>M 36 x 1.5</td>
<td>34 ... 65</td>
<td>-</td>
</tr>
<tr>
<td>HSA 32</td>
<td>20</td>
<td>40000</td>
<td>-</td>
<td>71</td>
<td>-</td>
</tr>
<tr>
<td>HSA 40</td>
<td>25</td>
<td>60000</td>
<td>-</td>
<td>85</td>
<td>-</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- [Hydraulic clamps type HSE and HSA: D 4711](#)
Axial piston motors are constant motors. They have a constant displacement and therefore generate a fixed rotation speed dependent on the flow rate.

The axial piston motor type M60N is designed for open and closed circuits and operates based on the bent axis principle.

The motor is particularly suitable for usage in mobile applications.

Features and benefits:
- Optimized power-to-weight ratio
- Rotation speed
- Different shaft and flange versions

Intended applications:
- Machines for forestry and agricultural purposes
- Fan drives
- Construction machines
- Municipal trucks

Design and order coding example

<table>
<thead>
<tr>
<th>M60N - 064</th>
<th>B</th>
<th>S</th>
<th>F</th>
<th>N - S1</th>
<th>00</th>
<th>-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports</td>
<td>With/without speed sensor</td>
<td>Axial version</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed sensor</td>
<td>Radial version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version with housing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seals</td>
<td>NBR (N), FKM (V), HNBR (H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flange version</td>
<td>Flange ISO 7653 - 1985</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flange SAE J744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flange ISO 3019 - 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaft version</td>
<td>ISO 14 parallel key splined shaft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAE J744 parallel key</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAE J744 spline shaft and flange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotating direction</td>
<td>DIN 6885 parallel key</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General parameters and dimensions

Parameters

<table>
<thead>
<tr>
<th>Geom. displacement</th>
<th>Nom. pressure</th>
<th>Max. speed</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_g [cm³/rev]</td>
<td>p_{nom} (p_{max}) [bar]</td>
<td>n [rpm]</td>
<td>L</td>
<td>L1</td>
</tr>
<tr>
<td>M60N- 012</td>
<td>12,6</td>
<td>350</td>
<td>7500</td>
<td>206</td>
</tr>
<tr>
<td>M60N- 017</td>
<td>17,0</td>
<td>350</td>
<td>7500</td>
<td>206</td>
</tr>
<tr>
<td>M60N- 025</td>
<td>25,4</td>
<td>350</td>
<td>5900</td>
<td>206</td>
</tr>
<tr>
<td>M60N- 034</td>
<td>34,2</td>
<td>350</td>
<td>5900</td>
<td>206</td>
</tr>
<tr>
<td>M60N- 040</td>
<td>41,2</td>
<td>350</td>
<td>5300</td>
<td>242</td>
</tr>
<tr>
<td>M60N- 047</td>
<td>47,1</td>
<td>350</td>
<td>5300</td>
<td>242</td>
</tr>
<tr>
<td>M60N- 056</td>
<td>56,7</td>
<td>350</td>
<td>5300</td>
<td>242</td>
</tr>
<tr>
<td>M60N- 064</td>
<td>63,5</td>
<td>350</td>
<td>5300</td>
<td>242</td>
</tr>
<tr>
<td>M60N- 084</td>
<td>83,6</td>
<td>350</td>
<td>4400</td>
<td>264</td>
</tr>
<tr>
<td>M60N- 090</td>
<td>90,7</td>
<td>350</td>
<td>4400</td>
<td>264</td>
</tr>
<tr>
<td>M60N- 108</td>
<td>108,0</td>
<td>350</td>
<td>4400</td>
<td>264</td>
</tr>
<tr>
<td>M60N- 130</td>
<td>130,0</td>
<td>350</td>
<td>4200</td>
<td>264</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Variable displacement axial piston pump type V60N: D 7960 N

Similar products:
- Variable displacement axial piston pumps type V40M: Page 26
- Variable displacement axial piston pumps type V30D: Page 20
- Variable displacement axial piston pumps type V30E: Page 16
- Fixed displacement axial piston pump type K60N: D 7960 K

Suitable prop. directional spool valves:
- Type PSL/PSV size 2, 3 and 5: Page 106
- Type PSLF/PSVF sizes 3, 5 and 7: Page 112

Suitable load-holding valves:
- Type LHK, LHDV, LHT: Page 204
Hydraulic accessories

<table>
<thead>
<tr>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaphragm accumulator type AC</td>
<td>266</td>
</tr>
<tr>
<td>Piston type accumulator type HPS</td>
<td>268</td>
</tr>
<tr>
<td>Pressure switch type DG</td>
<td>270</td>
</tr>
<tr>
<td>Pressure filter type PFM</td>
<td>272</td>
</tr>
<tr>
<td>Fittings</td>
<td>274</td>
</tr>
</tbody>
</table>
Pressure Accumulators

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>(p_{\text{max}}) (bar)</th>
<th>Nominal volume (dm(^3))</th>
<th>Piston diameter</th>
</tr>
</thead>
</table>
| AC | Pressure accumulators
• Screw-in version | 13: 500
40: 400
202: 250
603: 330
725: 250
1002: 210
1035: 350
1414: 140
2001: 100
2002: 250
2035: 350
2825: 250
3225: 210 | 13: 0.01
40: 0.04
202: 0.16
603: 0.60
725: 0.08
1002: 1.00
1035: 1.00
1414: 1.40
2001: 1.95
2002: 1.90
2035: 1.95
2825: 2.80
3225: 0.32 | - |
| HPS | Piston-type accumulator
• In-line installation | 350 | 0.1 ... 40.00 | 50 ... 180 mm |

Hydraulic Accessories

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>(p_{\text{max}}) (bar)</th>
</tr>
</thead>
</table>
| DG | Spring-loaded piston-type pressure switch, electronic pressure switch
• Manifold mounting
• Screw-in version
• Version for pipe connection | 1, 5E, 8: 600
3: 700
6: 400 |
| PFM | Pressure filter | 250 |
| Fittings | Reducing connector, connection fitting, screen filter, wire mesh filter, pressure gauge
• Screw-in version
• Version for pipe connection | 350 ... 700 |
Diaphragm accumulators are a type of hydraulic accumulator. A diaphragm separates the compressible gas cushion from the hydraulic fluid. The diaphragm accumulator type AC is used as a source of pressurized oil. It supports or increases the pump delivery flow or stores pressure energy, e.g. for an accumulator charge circuit.

With the aid of different fittings the hydraulic accumulator type AC can be integrated into a hydraulic system. Different installation orientations and installation positions are possible.

Features and benefits:
- Compact design
- Option of integration into the HAWE modular system
- Operating pressures up to 350 bar

Intended applications:
- Clamping systems
- Jigs
- Accumulator charging systems

Design and order coding example

<table>
<thead>
<tr>
<th>AC 2001</th>
<th>/90</th>
<th>/3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic type, size</td>
<td>Hydraulic accumulator type AC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AC 40</th>
<th>-1/4</th>
<th>-0.200</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS 13</td>
<td>-1/4</td>
<td>-0.50</td>
</tr>
<tr>
<td>/110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setting shut-off valve [bar]</th>
<th>Gas pre-charge pressure [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas pre-charge pressure [bar]</td>
<td>Connection thread</td>
</tr>
</tbody>
</table>

Function

AC
General parameters and dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>V_0 [dm³]</th>
<th>p_{max} [bar]</th>
<th>Max. gas filling pressure p_0 [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
<th>m [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic miniature accumulator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC 13-1/4</td>
<td>0.013</td>
<td>500</td>
<td>250</td>
<td>G 1/4 A</td>
<td>see illustration</td>
<td>0.3</td>
</tr>
<tr>
<td>AC 13-1/4</td>
<td>0.013</td>
<td>500</td>
<td>250</td>
<td>G 1/4 A</td>
<td>see illustration</td>
<td>0.3</td>
</tr>
<tr>
<td>AC 40-1/4</td>
<td>0.040</td>
<td>400</td>
<td>250</td>
<td>G 1/4 A</td>
<td>see illustration</td>
<td>0.65</td>
</tr>
<tr>
<td>Hydraulic accumulator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC 0725/1A</td>
<td>0.075</td>
<td>250</td>
<td>130</td>
<td>G 1/4 A</td>
<td>81</td>
<td>26.5</td>
</tr>
<tr>
<td>AC 202/2A</td>
<td>0.16</td>
<td>250</td>
<td>130</td>
<td>G 3/8 A</td>
<td>102</td>
<td>26.5</td>
</tr>
<tr>
<td>AC 322/2A</td>
<td>0.32</td>
<td>210</td>
<td>140</td>
<td>G 3/8 A</td>
<td>101.5</td>
<td>25</td>
</tr>
<tr>
<td>AC 603/3</td>
<td>0.6</td>
<td>330</td>
<td>200</td>
<td>G 1/2</td>
<td>149</td>
<td>23</td>
</tr>
<tr>
<td>AC 1002/22</td>
<td>1.0</td>
<td>210</td>
<td>140</td>
<td>M 22 x 1.5</td>
<td>151</td>
<td>25</td>
</tr>
<tr>
<td>AC 1414/2A</td>
<td>1.4</td>
<td>140</td>
<td>120</td>
<td>G 3/8 A</td>
<td>162</td>
<td>25</td>
</tr>
<tr>
<td>AC 2002/4</td>
<td>1.95</td>
<td>250</td>
<td>140</td>
<td>G 3/4</td>
<td>229</td>
<td>25</td>
</tr>
<tr>
<td>AC 2825/3</td>
<td>2.8</td>
<td>250</td>
<td>130</td>
<td>G 1/2</td>
<td>246</td>
<td>26.5</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Miniature hydraulic accumulators, type AC: D 7571
- Diaphragm accumulator type AC: D 7969

Hydraulic accessories:
- Fittings type X84: Page 274

Similar products:
- Piston type accumulator type HPS: Page 268
Piston type accumulators are a type of hydraulic accumulator. A freely moving piston separates the compressible gas cushion from the hydraulic fluid. The piston type accumulator type HPS supports or increases the pump delivery flow or stores pressure energy. It is used in clamping hydraulics to compensate for volume changes in the event of temperature fluctuations, to cover any leakage losses or to dampen oscillations.

The piston type accumulator type HPS can be installed in different situations with the aid of suitable fastening clips.

Features and benefits:
- Compact design
- Option of integration into the HAWE modular system

Intended applications:
- Accumulator charging systems
- Construction machines
- Wind power plants
- Machine tools

Design and order coding example

HPS 10 - 350 - 160 - 0050

Nom. volume	V₀ [dm³]
Int. diameter [mm]	
max. operating pressure [bar]	350 bar

Basic type: Piston type hydraulic accumulator type HPS

Function

HPS
General parameters and dimensions

<table>
<thead>
<tr>
<th>Nom. volume V_0 [dm³]</th>
<th>p_{max} [bar]</th>
<th>Ports (BSPP)</th>
<th>Dimensions [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>HPS 10 - 350 - 050</td>
<td>0.1 ... 1.0</td>
<td>G 3/4</td>
<td>60</td>
</tr>
<tr>
<td>HPS 10 - 350 - 080</td>
<td>0.4 ... 4.0</td>
<td>G 3/4</td>
<td>95</td>
</tr>
<tr>
<td>HPS 10 - 350 - 100</td>
<td>2.0 ... 10.0</td>
<td>G 1</td>
<td>115</td>
</tr>
<tr>
<td>HPS 10 - 350 - 140</td>
<td>4.0 ... 25.0</td>
<td>G 1 1/2</td>
<td>160</td>
</tr>
<tr>
<td>HPS 10 - 350 - 160</td>
<td>6.0 ... 30.0</td>
<td>G 1 1/2</td>
<td>180</td>
</tr>
<tr>
<td>HPS 10 - 350 - 180</td>
<td>8.0 ... 40.0</td>
<td>G 1 1/2</td>
<td>205</td>
</tr>
</tbody>
</table>

The data listed represent only a selection of the various differing versions.

Associated technical data sheets:
- Piston type accumulators, type HPS: D 7969 HPS

Similar products:
- Diaphragm accumulator type AC: Page 266
Pressure switches open and close an electrical contact at a previously defined pressure. As soon as the pressure is reached, a further work step is started or stopped by an electrical signal.

The pressure switch type DG is available as a mechanical or electronic switch. The pressure can be adjusted up to 700 bar. The adjustment is made via a pushbutton, a setting knob, a setting screw or a setting ring.

The pressure switch is also available with two switching points for different pressures.

Features and benefits:
- Compact design
- Option of integration into the HAWE modular system
- Operating pressures up to 1000 bar

Intended applications:
- General hydraulic systems
- Machine tools

Nomenclature:
- Spring loaded piston type pressure switch
- Electronic pressure switch
- Pressure transducer

Design:
- Screw-in version
- Manifold mounting
- Designed for pipe fittings

p_{max}: 700 bar

Design and order coding example

<table>
<thead>
<tr>
<th>DG 1</th>
<th>RF</th>
<th>-YS 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG 35</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

- **Hydraulic connection**
 - With various tapped journals or to be mounted at fittings (type DG 3..)
 - Combination with various fittings

- **Means of adjustment, mounting**
 - Manually adjustable (R) or Turn-knob (V, H = with lock) (type DG 3..)
 - Design with bezel for installation in control panels (F)

Basic type
- Pressure switch type DG
- Type DG 1, 3, 8 (spring loaded piston type switch)
- Type DG 5, DG 6 (Electronic pressure switch with two switch points)
- Operating voltage 12 V DC, 24 V DC, 110 V AC, 230 V AC
- Analogous pressure transducer type DT
- Type DT 11
- Type DT 2

Function

- DG 1 R
- DG 8
- DG 3..
General parameters and dimensions

DG 1 R
Adjustment via turn-knob at the dial
- p_{max}: 20 ... 600 [bar]
- Ports (BSPP): G 1/2 or G 1/4 A
- Weight: 1.3 [kg]

DG 3
Compact design for manifold mounting
Adjustment via set screw
- p_{max}: 4 ... 700 [bar]
- Ports (BSPP): G 1/4 or G 1/4 A
- Weight: 0.3 [kg]

DG 5 E
Electronic pressure switch with two switch points
- p_{max}: 0 ... 600 [bar]
- Ports (BSPP): G 1/4 A
- Weight: 0.25 [kg]

DG 6
Electronic pressure switch with two switch points
- p_{max}: 0 ... 400 [bar]
- Ports (BSPP): G 1/4 A or M 5
- Weight: 0.08 [kg]

DT 11
Analogous pressure sensor
- p_{max}: 0 ... 1000 [bar]
- Ports (BSPP): G 1/4
- Weight: 0.08 [kg]

DT 2
Analogous pressure sensor
- p_{max}: 0 ... 600 [bar]
- Ports (BSPP): G 1/4
- Weight: 0.7 [kg]

1) The max. operating pressure of 700 bar is not influenced by the max. possible set pressure
2) For versions with adapter only

Associated technical data sheets:
- Pressure switch type DG: D 5440
- Electronic pressure switch type DG 5: D 5440 E/1
- Electronic pressure switch type DG 6: D 5440 F

Similar products:
- Electronic pressure transducer type DT 11: D 5440 T/2
- Electronic pressure transducer type DT 2: D 5440 T/1

Hydraulic accessories:
- Fittings type X, X 84: Page 274
Pressure filters protect downstream hydraulic components against soiling. They are installed in the high-pressure line typically after the pump.

The pressure filter type PFM contains a filter element through which the fluid flows from the inside to the outside. It can be replaced without drips or soiling using standard tools. The ratio of size to performance is optimal, for this reason the filter has low pressure losses even after absorbing a large amount of soiling.

The pressure filter type PFM is used in machine tools, industrial trucks, lifting platforms and in general in oil hydraulics.

- Energy-efficient thanks to low back pressure
- Long change intervals due to high dirt-holding nominal volume
- Filter element replacement is simple and clean

Intended applications:
- Machine tools
- Industrial trucks
- Lifting platforms
- General oil hydraulics

Nomenclature:
- Pressure filter

Version:
- In-line installation
 - Can be flanged

- \(p_{\text{max}} \): 250 bar
- \(Q_{\text{max}} \): 90 l/min

Design and order coding example

<table>
<thead>
<tr>
<th>PFM4</th>
<th>-4</th>
<th>8</th>
<th>10</th>
<th>-R4</th>
<th>T</th>
<th>-V0</th>
<th>/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seal</td>
<td>without = series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KB = cold-resistant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual clogging display</td>
<td>VE = electrically 12/24V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VO = visually</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VX = retrofittable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- = without</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation position</td>
<td>T = vertical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D = suspended</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By-pass valve</td>
<td>R4 = 4 bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X = without</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter fineness</td>
<td>10 (\mu)m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumetric flow</td>
<td>5 = less than 40 l/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 = less than 90 l/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td>4 = in-line installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNF3 = in-line installation 7/8-14 UNF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F = flange design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic type</td>
<td>PFM4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Function
General parameters and dimensions

Flange design with corner dimensions

![Flange design with corner dimensions](image1)

In-line installation with corner dimensions

![In-line installation with corner dimensions](image2)

<table>
<thead>
<tr>
<th>Type</th>
<th>Dimensions [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFM4-45</td>
<td>234</td>
</tr>
<tr>
<td>PFM4-F5</td>
<td>236</td>
</tr>
<tr>
<td>PFM4-48</td>
<td>305</td>
</tr>
<tr>
<td>PFM4-F8</td>
<td>301</td>
</tr>
</tbody>
</table>

Associated technical data sheets:
- Pressure filter type PFM: D 8040
A selection of hydraulic accessories is available for use in hydraulic systems. Measuring instruments, for example pressure gauges, are used for pressure monitoring and command devices, for example pressure switches, for pressure-controlled switching. Hydraulic accumulators are also available. Various fittings are available, which are used to connect these hydraulic devices to the pressure lines of HAWE hydraulic power packs and valves in various assembly situations. The devices can be combined using reducing connectors. Additional accessory parts such as screen and wire mesh filters safeguard the hydraulic devices against larger, stray impurities which may occasionally occur.

Features and benefits:
- Compact design
- Option of integration into the HAWE modular system
- Operating pressures up to 700 bar

Intended applications:
- General hydraulic systems

Nomenclature:
- Reducing connector
- Connection fitting
- Screen filter
- Wire mesh filter
- Pressure gauge

Design:
- Screw-in version for pipe connection
- p_{max}: 350... 700 bar

Designs

Reducing connectors (various dimensions)

<table>
<thead>
<tr>
<th>G - g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal thread - external thread</td>
</tr>
<tr>
<td>BSPP thread - metric thread</td>
</tr>
<tr>
<td>BSPP thread - BSPP thread</td>
</tr>
<tr>
<td>Metric thread - metric thread</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G - g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric thread - BSPP thread</td>
</tr>
</tbody>
</table>

Fittings

| Connection fitting with tapped journal G 1/4 |
| Connection fitting with fastening nut and internal port G 1/4 |
| Connecting pieces for attaching the cutting ring for external pipe diameter 6 to 20 mm |
| Straight screw-in fitting |
| Swivel fitting |
| L-fitting |

Symbol:

Example: Straight fitting type X... G

Example: Elbow fitting type X... V

Example: Swivel fitting type X... S
Fitting combinations

Consisting of:
- Connecting pieces
- Straight screw-in fitting
- Swivel fitting
- L-connecting pieces
- Elbow fitting
- AVM 8 shut-off valve
- Locking element

Example: X 84T

Screen and wire mesh filters

- BSPP thread
- Metric thread
- Screw-in strainer type HFC (hole Φ 0.63 mm)
- Screw-in wire mesh filter disc type HFC.. F (filter fineness approx. 100 μm)
- Also available with housing

Example: HFE 3/8
Strainer with housing (hole Φ approx. 0.5 mm), with connection thread G 3/8(A)

Example: HFC 1/4 F
Screw-in wire mesh filter disc for port G 1/4, filter fineness approx. 100 μm

Associated technical data sheets:
- Reducing connector type G: D 845
- Fitting type X: D 7065
- Fitting type X 84: D 7077
- High-pressure screen filter type HFC, HF and HFE: D 7235
- Shut-off valves type AVM 8: Page 234
<table>
<thead>
<tr>
<th>Electronic additional components</th>
<th>278</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmable logic valve control type PLVC</td>
<td>280</td>
</tr>
<tr>
<td>Valve controls type CAN-IO, EV2S-CAN</td>
<td>282</td>
</tr>
</tbody>
</table>
General electronic accessory components

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic accessory</td>
<td></td>
<td>Features and benefits:</td>
</tr>
<tr>
<td>components</td>
<td>- Female connectors with no special feature (standard)</td>
<td>• Compact design</td>
</tr>
<tr>
<td>Type MSD etc., EV</td>
<td>- With rectifier circuit, - With clamp diode, - With LED with economy circuit</td>
<td>• Functions tailored to HAWE-products</td>
</tr>
<tr>
<td></td>
<td>- Amplifier units for proportional solenoids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Supply voltage units</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Female connectors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Modules with screw terminals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Cards with terminal block</td>
<td></td>
</tr>
</tbody>
</table>

Electronic controls

<table>
<thead>
<tr>
<th>Type</th>
<th>Nomenclature/Design</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLVC, CAN-IO</td>
<td>Programmable logic valve control</td>
<td>• Modular systems with extension and enhancement modules</td>
</tr>
<tr>
<td></td>
<td>- Modular system with</td>
<td>(Basic and expansion module)</td>
</tr>
<tr>
<td></td>
<td>- Basic modules</td>
<td>• Flexible programming</td>
</tr>
<tr>
<td></td>
<td>- Extension modules</td>
<td>• Different interfaces (RS 232, CAN bus, Profibus)</td>
</tr>
<tr>
<td></td>
<td>- CAN bus nodes</td>
<td>• All output parameters can be customised</td>
</tr>
<tr>
<td></td>
<td>- Display</td>
<td>• Software function modules (PLC programs)</td>
</tr>
</tbody>
</table>
Electronic additional components

Proportional amplifiers actuate proportional solenoid valves by converting an input signal into a corresponding control current. The proportional amplifier type EV is available as a module for top-hat rail mounting or, alternatively, as a card for a card holder. Highly precise functions are possible thanks to the feedback measurement at the valve outputs. The control parameters (I_{min}, I_{max}, dither, ramp times) are configured using pushbuttons or a potentiometer.

Features and benefits:
- Compact design
- Easy commissioning
- Functions tailored to HAWE-products

Intended applications:
- For the actuation of proportional valves
- Switch cabinet installation in an industrial setting

Nomenclature:
- Female connectors with no special feature (standard) With rectifier circuit
 With clamp diode
 With LED with economy circuit
- Amplifier units
 for proportional solenoids
- Power supply units

Design:
- Female connectors
 Modules with screw terminals
 Cards with terminal block

General parameters and dimensions

Male connector for solenoid valves (single and twin solenoid)

<table>
<thead>
<tr>
<th>Brief description</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>No special feature (standard)</td>
<td>For all applications with no special requirements</td>
</tr>
<tr>
<td>Version with LED</td>
<td>Visual switching function and EMC protection (note prolonged cut-off times)</td>
</tr>
<tr>
<td>Version with clamp diode</td>
<td>For optimum EMC protection (note prolonged cut-off times)</td>
</tr>
<tr>
<td>Version with economy circuit</td>
<td>Increased functional security and prolonged lifetime of the solenoids by reducing the voltage (pulse width modulation) after a defined period. Recommended for use in areas with high ambient temperatures and/or for application where the solenoids are permanently energised (e.g. safety circuits)</td>
</tr>
<tr>
<td>Version with rectifier circuit</td>
<td>Enables use of DC solenoids when a supply voltage of 110V AC, 230V AC is available</td>
</tr>
</tbody>
</table>

Male connectors with no special feature (DC voltage supply) or the version with rectifier circuit for supply voltage of 110V AC, 230V AC are included as standard in the scope of delivery of the solenoid valve.
Proportional amplifier

Features:

- Constant current control (regardless of the supply voltage and changes in resistance of the solenoid due to heating effects)
- Improved EMC properties
- Use in a broad temperature range

Adjustable parameters:

- I_{max} and I_{min} setting
- Setting for ramp time up to 10 sec
- Reference voltage for potentiometric setpoint generator available
- Option to set dither amplitude and frequency

<table>
<thead>
<tr>
<th>Type</th>
<th>Brief description</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV 1 M</td>
<td>Module version (board only or built-in housing)</td>
<td>Suitable for installation in switch cabinets, secured with screw terminals</td>
</tr>
<tr>
<td>EV 1 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV 22 K</td>
<td>Card version</td>
<td>Card suitable for control of two proportional solenoids. Use in card holder for one, or in a module rack for max. 3 amplifier cards</td>
</tr>
</tbody>
</table>

Power supply for solenoid valves

<table>
<thead>
<tr>
<th>Type</th>
<th>Brief description</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNG</td>
<td>Power supply for input voltage 230V AC and output voltage 24V DC, max. power rating 5A</td>
<td>Power supply for solenoid-actuated hydraulic valves or electrical amplifiers for proportional solenoids</td>
</tr>
</tbody>
</table>

Associated technical data sheets:

Male connectors:
- Line connector type MSD and others: D 7163
- Economy circuit plug type MSE 28026 with adjustable economy voltage: D 7832

Electronic amplifiers:
- Proportional amplifier type EV1M3: D 7831/2
- Electronic amplifier type EV1D: D 7831 D
- Proportional amplifier type EV22K2: D 7817/1

Power supply:
- Power supply unit type MNG: D 7835

Additional electrical components:
- Proportional amplifier: Page 278
- Programmable logic valve control type PLVC: Page 280
- CAN node type CAN-ID: Page 282
- Other electronic accessories See "Electronics"

Suitable products:

Lifting modules:
- Type HMT, etc.: Page 156

Prop. pressure valves:
- Type PM, PMZ: Page 190
- Type PMV, PDV: Page 178
- Type PDM: Page 192

Prop. directional seated valves type EMP: Page 140
Prop. directional spool valves type PSL, PSV: Page 106
Prop. flow control valves type SE, SEH: Page 218

Electronic pressure sensors:
- Type DT 11 and DT 2: Page 270
Valve controls control and regulate complex mobile or stationary hydraulic systems. The programmable valve control type PLVC is a freely programmable PLC with integrated proportional amplifiers. Highly precise functions are possible thanks to the feedback measurement at the valve outputs. The number of digital and analogue inputs and outputs can be configured variably.

The valve control is of modular design and can be expanded to suit the application. It can be very straightforwardly integrated into existing systems due to the existing interfaces.

- Modular systems with extension and enhancement modules (Basic and expansion module)
- Flexible programming
- Different interfaces (RS 232, CAN bus, Profinet)
- All output parameters can be customised
- Software function modules (PLC programs)

Intended applications:
- Construction machines
- Crane systems
- Complex lifting devices
- Machines for forestry purposes
- Machine tools and press construction

General parameters and dimensions

<table>
<thead>
<tr>
<th></th>
<th>PLVC 41</th>
<th>PLVC 21</th>
<th>PLVC 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital</td>
<td>27 (3 / 24)</td>
<td>13 (5 / 8)</td>
<td>17 (10 / 7)</td>
</tr>
<tr>
<td>Analogue</td>
<td>28 (4 / 24)</td>
<td>12 (4 / 8)</td>
<td>23 (11 / 12)</td>
</tr>
<tr>
<td>Frequency</td>
<td>3 (3 / -)</td>
<td>3 (3 / -)</td>
<td>3 (3 / -)</td>
</tr>
<tr>
<td>Emergency stop</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Number of outputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital</td>
<td>16 (- / 16)</td>
<td>16 (8 / 8)</td>
<td>13 (- / 13)</td>
</tr>
<tr>
<td>Analogue (PWM)</td>
<td>16 (4 / 16)</td>
<td>4 (4 / -)</td>
<td>16 (16 / -)</td>
</tr>
<tr>
<td>Analogue (0 ... 10V)</td>
<td>1 (1/-)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Relay</td>
<td>8 (3 / 8)</td>
<td>4 (- / 4)</td>
<td>--</td>
</tr>
<tr>
<td>Auxiliary voltage</td>
<td>1 (5V DC)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS 232</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>CAN bus</td>
<td>x</td>
<td>x (- / x)</td>
<td>x (x / x)</td>
</tr>
<tr>
<td>Profinet</td>
<td>--</td>
<td>x</td>
<td>--</td>
</tr>
<tr>
<td>Power supply (10 ... 30V DC)</td>
<td>5A (10A)</td>
<td>5A</td>
<td>5A</td>
</tr>
</tbody>
</table>

1) Always max. number of inputs and outputs, figures in brackets apply to basic modules and expansion modules
Programmable logic valve control:
- Programmable logic valve control with Proﬁbus type PLVC 21: D 7845-21
- Programmable logical valve control type PLVC 41: D 7845-41
- Programmable logic valve control type PLVC 8: D 7845 M
- CAN node type CAN-ID: D 7845-ID 14

Proportional valves:
- Proportional ﬂow control valves type SE, SEH: Page 218
- Proportional pressure-reducing valve type PM, PMZ: Page 190
- Proportional pressure-limiting valve type PMV, PDV: Page 178
- Proportional pressure-reducing valve type PDM: Page 192

Software function packs (examples):
- Position measurement
- CAN bus communication
- Position and volumetric ﬂow control
- Fault detection
- Controller for closed control circuits
- Ganging
- Electronic volumetric ﬂow distribution
- Stability
- Limit load control
- Pressure control

Advantage: PLC programming using structured texts (ST) (see above) – The customer can customise the control at any time.

Dimensions
Valve controls control and regulate complex mobile or stationary hydraulic systems. The programmable logic valve control type CAN IO is a freely programmable PLC with integrated proportional amplifiers. The input and output parameters are set using logical operators. All outputs can also be used as inputs. It is possible to connect together several decentralized CAN IO valve controls using the CAN bus.

The proportional amplifier type EV2S-CAN is a plug amplifier designed to be fitted directly on a proportional single or twin solenoid. Parameters can be configured either using the pushbuttons and an integrated display or via CAN bus using computer software.

Features and benefits:
- CAN bus interface
- Functions and settings tailored to HAWE products
- Precise current-controlled outputs

Intended applications:
- Mobile machinery and the industry sector
- Connection of analogue proportional valves in the CAN bus networks
- Closed control circuits
- Simple expansion of existing systems

General parameters and dimensions

<table>
<thead>
<tr>
<th></th>
<th>CAN-IO 14</th>
<th>EV2S-CAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>Analogue</td>
<td>6 (10)</td>
<td>2</td>
</tr>
<tr>
<td>Number of outputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>Analogue (PWM)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>RS 232</td>
<td>x</td>
<td>--</td>
</tr>
<tr>
<td>CAN bus</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Power supply</td>
<td>10 ... 30 V DC</td>
<td>10 ... 30 V DC</td>
</tr>
<tr>
<td>Output current</td>
<td>2 A (max. 10 in total)</td>
<td>2 A</td>
</tr>
</tbody>
</table>

Nomenclature:
- Programmable logic valve control
- Amplifier plug for proportional solenoids

Design:
- Valve control with central plug
- Plug amplifier with M12 connection
- Plug amplifier with 3 m cable
- Plug amplifier for two single-stroke solenoids
Associated technical data sheets:
- CAN node type CAN-I0: D 7845-I0 14
- Electronic amplifier type EV2S-CAN: D 7818/1

Similar products:
- Programmable logic valve control with Proﬁbus type PLVC 21: D 7845-21
- Programmable logical valve control type PLVC 41: D 7845-41
- Programmable logic valve control type PLVC 8: D 7845 M
- Proportional amplifier type EV1M3: D 7831/2
The performance of a hydraulic system depends to a large extent on the quality of the hydraulic fluid used. The hydraulic fluid should essentially be selected according to the operating conditions, such as

- Temperature (see viscosity classes)
- Device type (possible ban on certain hydraulic fluids due to undesired reactions with metals, seals etc.)
- Usage type (e.g. environmentally compatible hydraulic fluids)
- Surroundings (use of existing hydraulic fluids)

Temperature range:
- Ambient: -40...+80°C
- Important: Air-driven pumps type LP +5...+80°C
- Hydraulic fluid: -25...+80°C
- Please observe viscosity range and any additional restrictions.

Start temperature:
- Down to -40°C permissible
- Observe start viscosities as long as the steady-state temperature is at least 20K higher for subsequent operation! For biologically degradable or fire inhibiting hydraulic fluids generally not over max. +60...+70°C.

Viscosity range:
- Min. approx. 4 mm²/s
- Max. approx. 1500 mm²/s
- Optimal operating range approx. 10...500 mm²/s

Mineral oils

<table>
<thead>
<tr>
<th>Hydraulic fluid</th>
<th>Characteristics</th>
<th>Unusual features / restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic oils HLP (DIN 51524 part 2)</td>
<td>Mineral oil with additives improving corrosion, oxidation and wear protection</td>
<td>Common hydraulic fluid</td>
</tr>
<tr>
<td>Hydraulic oils HL (DIN 51524 part 1)</td>
<td>Mineral oil without wear protecting additives</td>
<td>Not suitable for any types of gear pump due to the lack of wear protection additives.</td>
</tr>
<tr>
<td>Hydraulic oils HVLP (DIN 51524 part 3)</td>
<td>Mineral oil with same additives as HLP, but with increased viscosity index for use in higher temperature ranges</td>
<td>The viscosity index correctors have a negative effect on the shear strength (viscosity loss approx. 30% when loaded), demulsifying behaviour and air release characteristics, for example. Only use if required due to temperature range. Oil manufacturer must be consulted!</td>
</tr>
<tr>
<td>Unalloyed oils H e.g. - Lubricating oils (DIN 51517 Part 1) - White oils (e.g. NSF H1)</td>
<td>Mineral oil without additives</td>
<td>Due to lack of additives only suitable for systems in the standby mode (S2 or S3 mode) (low lubricity). White oils are mostly used in systems with possible contact with foodstuffs.</td>
</tr>
<tr>
<td>Hydraulic oils PAO (tested for compliance with DIN 51524 Part 2 and Part 3)</td>
<td>Mineral oil with additives improving corrosion, oxidation and wear protection</td>
<td>See information on hydraulic oils HVLP</td>
</tr>
<tr>
<td>Special fluids in the aviation sector (MIL H-5606) in the marine sector (NATO H 540)</td>
<td>Mineral oils are based as a rule on naphtenic oil with wide temperature range</td>
<td>Seals made of fluor rubber FPM might be required, depending on hydraulic fluid. Consult the oil manufacturer!</td>
</tr>
<tr>
<td>Other mineral oils - Engine oils HD ATF automatic transmission fluid (AO A, suffix A) Diesel Test oil for diesel injection pump test</td>
<td>Mineral oils which basically were developed for other application purposes</td>
<td>More or less suitable hydraulic fluids. Pay attention to the presence of oxidation and corrosion protection as well as material compatibility (above all in relation to the seals). Attention: increased leakage with directional spool valves. Oil manufacturer must be consulted!</td>
</tr>
</tbody>
</table>

Appendix 6

Hydraulic fluids – notes for selection
<table>
<thead>
<tr>
<th>Hydraulic fluid</th>
<th>Characteristics</th>
<th>Unusual features / restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed oil type HETG</td>
<td>Fluids based on seed oils e.g. rape or sunflower with additives show only low</td>
<td>Not suitable for compact power packs type HC, KA, MP, MPN, HK, HKL, all valves with wet armature</td>
</tr>
<tr>
<td></td>
<td>temperature resistance (< 60...70°C)</td>
<td>solenoids as well as control systems utilizing many throttles. HETG fluid show a tendency to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gum, ageing, and sticking at higher temperatures (> 60...70°C). Their use should be avoided!</td>
</tr>
<tr>
<td>Polyletheneglycol HEPG</td>
<td>Fluids based on polyethylene glycol (PEG)</td>
<td>No restrictions with regard to the operation behavior, but it</td>
</tr>
<tr>
<td>PEG-Polyethylene (may be solved in</td>
<td>Properties similar to mineral oil with regard to lifetime, lubricity and pressure</td>
<td>• Is harmful to standard enamel (does not apply to two-pot enamel)</td>
</tr>
<tr>
<td>water)</td>
<td>resistance</td>
<td>• Will clog cellulose filters (use only glass fiber or metallic filters)!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Shows bad lubrication characteristic with material pairings steel / light alloy or brass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No pumps and power packs with gear pumps type RZ and Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Do not use compact hydraulic power packs type HC, KA, MP, MPN, HK, HKL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No connection blocks with return line filter type A.F., AF, BF, EF, FF</td>
</tr>
<tr>
<td>Synthetical ester HEES</td>
<td>Similar qualities i.e. lifetime, lubricating characteristics and pressure</td>
<td>No restrictions with regard to the operation behavior. Contact with PVC should be avoided.</td>
</tr>
<tr>
<td>(carbon acid ester, diester, polyester)</td>
<td>resistance, like mineral oil</td>
<td></td>
</tr>
</tbody>
</table>
Flame-resistant hydraulic fluids ISO 12922

<table>
<thead>
<tr>
<th>Hydraulic fluid</th>
<th>Characteristics</th>
<th>Unusual features / restrictions</th>
</tr>
</thead>
</table>
| **HFA** (pressurized water, emulsions) | Oil in water emulsion, (water content > 80%) max. temp. range approx. 60°C | There is the danger of corrosion and cavitation due to the high water content, only use devices specially constructed for this purpose (radial piston pumps type R, directional seated valves type G) Max. pump pressure 50...60% (danger of cavitation) minimum content of mineral oil > 4%
- Do not use compact hydraulic power packs HC, KA, MP, MPN, HK, HKL – risk of short circuit
- No paper filters – risk of blockage
- No connection blocks with return line filter type A.F., AF, BF, EF, FF |
| **HFC** | Diluted (poly) glycol solution (water content > 35%) max. temp. range up to approx. 60°C | No restrictions with regard to the operation behavior, but it
- Incompatible with zinc
- No paper filters – risk of blockage
- No connection blocks with return line filter type A.F., AF, BF, EF, FF
- Will clog cellulose filters (use only glass fiber or metallic filters)!
- Shows bad lubrication characteristic with material pairings steel/light alloy or brass
- No compact hydraulic power packs HC, KA, MP, MPN, HK, HKL |
| **HFD**
HFDR phosphoric ester
HFDU polyolester | Fluids without water content, properties similar to mineral oil | Normal operation possible
Restrictions:
- Requires seals out of FPM (FKM)
(see also section "Seals")
- Oil manufacturer must be consulted! |

Special fluids

<table>
<thead>
<tr>
<th>Hydraulic fluid</th>
<th>Characteristics</th>
<th>Unusual features / restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT-Brake fluid</td>
<td>Brake fluid based on glycol (DOT 4)</td>
<td>No restrictions with regard to the operation behaviour, but devices must be equipped with EPDM or SBR seals (see "Seals" section) No compact hydraulic power packs type HC, KA, MP, MPN, HK, HKL</td>
</tr>
</tbody>
</table>
Viscosity grade selection

Of the 18 viscosity classes (ISO VG) listed in the standard "ISO viscosity classification for liquid lubricants" (ISO 3448), the areas ISO VG10 to ISO VG68 are relevant for hydraulic systems. The number after "ISO VG" corresponds to the nominal viscosity at a reference temperature of 40°C. The temperature behaviour displayed in the diagram corresponds to that of mineral hydraulic oils. The characteristic curve increase of HVLP and the environmentally compatible hydraulic fluids is flatter, indicating that the temperature effect is lower.

Due to manufacturer-related differences, the following benchmark figures are to be clarified and compared with the permissible viscosity ranges:

- Viscosity at 40°C
- Viscosity at the lowest (estimated or demanded) temperature
- Viscosity at the highest (estimated or demanded) temperature
 (to ensure sufficient service life of the seals not above 80°C!)

Temperature / viscosity curve

Guide lines for selection

- VG10, VG15
 Systems intended for short time operation or use in the open or for clamping devices.
 Systems intended for continuous operation
 (for use in the open, operation in winter only)
- VG22, VG32
 General application
 (for use in the open, operation in summer only)
- VG46, VG68
 Systems in tropical conditions at ambient temperatures up to 40°C or closed rooms

1. Optimum range
2. Reference temperature
ISO 3448
Hydraulic fluid filtration

Fine contamination (e.g. debris and dust) or contamination in the macro range (e.g. wear debris, rubber particles from hoses and seals) may significantly impair the function of a hydraulic system.

Maintain the following hydraulic fluid purities (assuming a thorough flushing has taken place prior to the date of commissioning):

<table>
<thead>
<tr>
<th>Recommended purity of the hydraulic fluid</th>
<th>Recommended filter fineness</th>
<th>Devices</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 4406 : 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21/18/15...19/17/13</td>
<td>$\beta_{16...25} \geq 75$</td>
<td>Radial piston and gear pumps, valves, cylinders (use in general mechanical engineering)</td>
<td>The purity degree of the hydraulic fluid is especially important for the repeatability accuracy with proportional valves.</td>
</tr>
<tr>
<td>20/17/14...18/15/12</td>
<td>$\beta_{6...16} \geq 75$</td>
<td>Prop. pressure and flow control valves</td>
<td>It should be noted that new hydraulic fluid "from the barrel" does not necessarily fulfill the highest cleanliness requirements.</td>
</tr>
<tr>
<td>19/17/14</td>
<td>$\beta_{6...16} \geq 75$</td>
<td>Variable displacement axial piston pumps</td>
<td></td>
</tr>
</tbody>
</table>

Lower limits must be applied for pressure above 250 bar

Service life of the hydraulic fluid

The aging of hydraulic fluids is caused by shearing processes, cracking induced by high temperatures (gumming), mixing with (condensed) water or reaction with other materials (e.g. metal) in the system (sludging). A major factor for the service life of the fluid is beside the anti-shear additives of the fluid the lay-out of the system e.g. tank size, operation temperature, number and design of throttling sections.

Besides the properties of the hydraulic fluid itself (e.g. due to additives for high shear stability), the design of the hydraulic control system (e.g. tank size, steady-state temperature, number and type of throttling points) has a major influence on this.

The following points are to be noted:

- Service temperature in the tank < 80°C (mineral oils, hydraulic fluids with low water content) Avoid higher temperatures – Service life reduction – (+10K corresponds to half service life)
- Rotational conditions of hydraulic fluid $\frac{Q_{\text{pump}}}{V_{\text{circuit}}}$ (guideline)
 - approx. 0.2...0.4/min for conventional compact hydraulic power packs
 - approx. ...1/min in mobile hydraulics
 - approx. ...4/min for hydraulic power packs in standby or no load operation
- Control of the hydraulic fluid on a regular base (fluid level, contamination, coloring index, neutralization value etc.)
- Change of the hydraulic fluid on a regular base (depending on fluid type and application conditions)
 Guideline:
 - approx. 4000 ... 8000 h (mineral oil)
 - approx. 2000 h (other hydraulic fluids)
 - or at least annually
 Take into account notes of the fluid manufacturer!

Changing the hydraulic fluid

Do not mix different types of hydraulic fluids! This may lead to undesirable chemical reactions causing sludge, resinification etc.

The relevant manufacturers should be consulted when switching between different hydraulic fluids. In all cases, the whole hydraulic system should be thoroughly flushed.
Interaction with seals

Any question about the compatibility with seal material should be settled with the fluid manufacturer always before using a certain hydraulic fluid (except mineral oil and synthetic esters). A rough overview is given in the table at the start of this section. HAWE utilizes seals made of the following materials as standard:

- **NBR** (acrylonitrile rubber, e.g. Bunan, Perbunan) or **HNBR** (hydrated NBR).

Some devices are available on request with seals made of:

- **FPM** (fluor rubber) e.g. for fluids type HFD
 - The coding-PYD should be added to the coding for HAWE devices, e.g. WN1H-G24-PYD
- **EPDM** (styrene-butadiene rubber) or **SBR**
 - The coding-AT should be added to the coding for HAWE devices, e.g. WN1H-G24-AT (for brake fluid)

Storing hydraulic fluids and hydraulic components

Storage conditions for hydraulic components depend primarily on the following factors:

- seals utilised, moistening with oil during the factory functional test

The storability of rubber materials is generally influenced by the following factors:

- Warmth, light, humidity, oxygen, ozone

As far as possible, components should be de-energised and without deformation when stored. A storage temperature range of 15 to 20°C is optimum. Relative humidity approx. 65% (+-10%). Exposure to direct sunlight or a light source with strong UV rays should be avoided.

Ozone-producing equipment (electric motors, high-voltage equipment) among other things must not be present in the storage room.

If seals are packaged in plastic bags, these should not contain any plasticisers and, if necessary, should be impermeable to UV light.

Details on storage of elastomers are also available in the following standards: DIN 7716/BS4F68:2012, MIL-HDBK-695, SAE ARP 5316, SAE AS 1933, DIN 9088.

Hydraulic fluids can be stored for an unlimited period in sealed containers supplied by the manufacturer, as no chemical reactions take place. The presence of atmospheric oxygen, dust and moisture can lead to more or less rapid oxidation and resinification, depending on the type of oil and its additives.

A dark room with virtually constant temperature and humidity is recommended for storage of hydraulic components. The parts should be kept in a plastic bag to protect them from dust and continuous air exchange.

A functional test (manual override, dry switching) should be carried out at least once a year to ensure operation.

Safety-related components: A six-monthly functional test on site and a regular factory inspection including seal replacement every 2 years.

When the hydraulic components are stored as described above, the risk of corrosion is low. Most external parts of HAWE components are coated with a protective layer (galvanised, nitrided) and moistened with oil.
Hydraulic systems planning must be carried out taking a variety of factors into consideration, whereby the hydraulic elements are selected according to the desired functional processes.

The most important condition for this is the definition or specification of relevant consumer variables, such as the loads (load forces, load torques or turning torques), motion functions (travel, speeds, rotational speeds, timing) etc.

Only then is it possible to determine hydraulic consumers (hydraulic motors, hydraulic cylinders), drive units (pumps with drives), control and regulating devices (valve types with actuations) as well as connecting elements (lines, branch points).

Other factors that have an influence on the choice of hydraulic systems and components include noise emission values and thermal budget considerations.

The following formulae and tables are non-binding and are intended to make producing the rough design for a hydraulic system easier.

General Information

Basic equations (static, without any loss)

- **Force**
 \[F = p A \]
- **Volume**
 \[V = \frac{Q}{f} \]
- **Pressure**
 \[p = \frac{F}{A} \]
- **Volumetric flow**
 \[Q = \frac{V}{t} \]
- **Power**
 \[P = F V \]
- **Speed**
 \[v = \frac{s}{t} \]
- **Travel (stroke)**
 \[s = \frac{V}{Q} \]
- **Torque**
 \[M = \frac{V p}{2 \pi} \]

Hydraulic Cylinders

Single Acting

- **Extending**
 Basic equations (balance of forces):
 \[A_1 = \frac{d_1^2}{4} \]
 \[A_2 = \frac{d_2^2}{4} \]
 \[A_3 = \frac{d_1^2 - d_2^2}{4} \]
 \[q - p_1 A_1 + p_2 A_2 = \frac{F}{A_3} \]
 \[Q_{in} = \frac{Q_{out}}{A_3} \]

- **Retracting**
 Basic equations (balance of forces):
 \[p_1 A_1 - p_3 A_3 = \frac{F}{A_2} \]
 \[Q_{in} = \frac{Q_{out}}{A_2} \]

Double Acting

- **Extending**
 Basic equations (balance of forces):
 \[A_1 = \frac{d_1^2}{4} \]
 \[A_2 = \frac{d_2^2}{4} \]
 \[A_3 = \frac{d_1^2 - d_2^2}{4} \]
 \[p_1 A_1 - p_3 A_3 - p_2 A_2 = \frac{F}{A_3} \]
 Simplified:
 \[F = \frac{p_1 A_1 - p_2 A_2 - p_3 A_3}{A_3} \]
 \[Q_{in} = \frac{Q_{out}}{A_3} \]

- **Retracting**
 Basic equations (balance of forces):
 \[p_1 A_1 - p_2 A_2 = \frac{F}{A_3} \]
 Simplified:
 \[F = \frac{p_1 A_1 - p_2 A_2}{A_3} \]
 \[Q_{in} = \frac{Q_{out}}{A_3} \]

Symbol

- **d**: piston diameter [mm]
- **A**: piston area [mm²]
- **F**: force [N]
- **p₁**: operating pressure [bar]
- **v**: Piston speed [mm/s]
- **Q₈**: inflow [lpm]
- **s**: stroke [mm]
- **t**: time [S]

The following formulae and tables are non-binding and are intended to make producing the rough design for a hydraulic system easier.
Equipment Formulas and description

Hydraulic pumps / hydraulic motors

<table>
<thead>
<tr>
<th>Basic equations: $\Delta p = p_1 - p_0$</th>
<th>Simplified: $V = A h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric volume per revolution (piston pumps): $V = A h$</td>
<td>Volumetric flow: $Q = V \cdot n$</td>
</tr>
<tr>
<td>Volumetric flow: $Q = V \cdot n$</td>
<td>Middle torque: $M = \frac{V \cdot \Delta p}{2 \pi}$</td>
</tr>
<tr>
<td>$M = \frac{V \cdot \Delta p}{2 \pi}$</td>
<td>Power: $P_{\text{hyd}} = \Delta p \cdot Q$</td>
</tr>
<tr>
<td>Power: $P_{\text{hyd}} = \Delta p \cdot Q$</td>
<td>Power rating (motor) $P_{\text{mech}} = \frac{\Delta p \cdot Q}{612}$</td>
</tr>
<tr>
<td>Power output (pump) $P_{\text{max}} = \Delta p \cdot Q \cdot \frac{n \cdot \eta_{\text{T}}}{2}$</td>
<td>$P_{\text{output}} = \frac{\Delta p \cdot Q}{740}$</td>
</tr>
</tbody>
</table>

V: displacement [cm3]
A: effective piston area [mm2]
h: double stroke [mm]
n: rev. rating [rpm]
M: middle torque [Nm]
p: pressure [bar]
Δp: effective pressure [bar]
Q: volumetric flow [lpm]
P$_{\text{hyd}}$: hydraulic performance [kW]
P$_{\text{mech}}$: mechanical performance [kW]
η_{T}: total efficiency (including volumetric and mechanical losses)

Guideline: A power rating of 1 kW for the drive is necessary to achieve a delivery volumetric flow of $Q = 1$ lpm with operating pressure $p = 500$ bar!

Valves

<table>
<thead>
<tr>
<th>Formulas and description</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directional valves</td>
<td>![Diagram of Directional Valve]</td>
</tr>
<tr>
<td>Pressure valves</td>
<td>![Diagram of Pressure Limiting Valve]</td>
</tr>
<tr>
<td>Metering valves</td>
<td>![Diagram of Flow Control Valve]</td>
</tr>
<tr>
<td>Check valves</td>
<td>![Diagram of Releasable Check Valve]</td>
</tr>
</tbody>
</table>

Losses of pressure by streaming fluid

The pressure loss in hydraulic systems consists of:

- Flow resistance of valves
- Flow resistance of pipes
- Flow resistance due to geometric shape (elbows etc.)

Pressure losses Δp in the valves that are caused by the volumetric flow of fluid can be found in the Δp-Q characteristics of the relevant documentation. For the purposes of an initial rough design, a performance loss of approx. 20... 30% in the overall control system can generally be expected.
Equipment Formulas and description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Orifices (ideally, sharp edged) e.g. orifice inserts type EB; bypass check valves type BC, BE</th>
</tr>
</thead>
</table>
| $Q = \alpha \cdot \pi \cdot d^2 \sqrt{\frac{2 \Delta p}{d}}$ | Q: volumetric flow [lpm]
Δp: flow resistance between A and B [bar]
d: orifice diameter [mm]
p: density (approx. 0.9 g/cm³)
α: flow coefficient (approx. 0.78) |
| $d = 1.35 \cdot \sqrt[3]{\frac{Q}{l [l/min]}} \cdot \frac{\Delta p [bar]}{\Delta \rho}$ | d: orifice diameter [mm]
q: volumetric flow [l/min]
Δp: pressure difference [bar]
$\Delta \rho$: density (approx. 0.9 g/cm³) |

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pipes / hoses The diameter of pipes and/or hoses should be selected in such a way that flow resistance is minimized.</th>
</tr>
</thead>
</table>
| λR: pipe flow resistance coefficient
Δp: flow resistance [bar]
l: pipe length [m]
d: pipe diameter [mm]
ν: cinematic viscosity [mm²/s]
Q: volumetric flow [lpm]
Re: Reynolds No. (< 2300)
p: density (approx. 0.9 g/cm³)
v: flow velocity [m/s] |
| $\frac{\Delta \rho}{\rho} = 6.1 \cdot \frac{\sigma}{d [mm]} \cdot \frac{v [mm^2/s]}{d [mm]}$ | Δp: pressure difference [bar]
ρ: density (approx. 0.9 g/cm³)
σ: cinematic viscosity [mm²/s]
ν: flow resistance coefficient
σ: flow resistance coefficient
ρ: density (approx. 0.9 g/cm³) |

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Flow resistance due to geometric shape (elbows etc.)</th>
</tr>
</thead>
</table>
| $\Delta p = \xi \cdot \frac{Q^2}{d^4 [mm]}$ | ξ: flow resistance coefficient
Δp: flow resistance [bar]
Q: volumetric flow [lpm]
d: pipe diameter [mm]
ν: cinematic viscosity [mm²/s]
p: density (approx. 0.9 g/cm³) |

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Leakage losses (by concentric ($e = 0$) and eccentric gaps)</th>
</tr>
</thead>
</table>
| $Q_i = \pi \cdot \frac{d^2 \cdot \Delta r^2}{2 \cdot \nu} \cdot \frac{\Delta p}{l} \cdot (1,15 \cdot e^2)$ | e: eccentricity [mm]
Δr: gap [mm]
Δp: Pressure difference [bar]
d: diameter [mm]
ν: cinematic viscosity [mm²/s]
l: gap length [mm]
p: density (approx. 0.9 g/cm³) |

| Symbol | $Q_i = 1848 \cdot \frac{d^2 \cdot \Delta r^2}{2 \cdot \nu} \cdot \frac{\Delta p}{l} \cdot (1,15 \cdot e^2)$ | e: eccentricity [mm]
Δr: gap [mm]
Δp: Pressure difference [bar]
d: diameter [mm]
ν: cinematic viscosity [mm²/s]
l: gap length [mm]
p: density (approx. 0.9 g/cm³) |
Equipment

Formulas and description

Volumetric losses

(due to pressure increase)

Basic equation:

\[
\Delta V = \beta_p \cdot p_0' \cdot \Delta \rho
\]

with

\[
\Delta \rho = p_2 - p_1\]

Simplified:

\[
\Delta V = 0.7 \cdot 10^{-4} \cdot V_0' \cdot \beta_p \cdot \Delta \rho
\]

with\(\beta_p = 0.7 \cdot 10^{-4} \cdot \frac{1}{\text{bar}}\)

- \(p_1\): pressure, start [bar]
- \(p_2\): pressure, end [bar]
- \(V_0\): initial volume [l]
- \(\Delta V\): change in volume [l]
- \(\beta_p\): compressibility

Volumetric losses

(due to temperature rise)

Basic equation:

\[
\Delta V = \beta_T \cdot V_0 \cdot \Delta \vartheta
\]

with

\[
\Delta \vartheta = \vartheta_2 - \vartheta_1\]

Simplified:

\[
\Delta V = 0.7 \cdot 10^{-3} \cdot V_0 \cdot \beta_T \cdot \Delta \vartheta
\]

with\(\beta_T = 0.7 \cdot 10^{-3} \cdot \frac{1}{\text{K}}\)

- \(\vartheta_1\): temperature, start [°C]
- \(\vartheta_2\): temperature, end [°C]
- \(\Delta \vartheta\): temperature, difference [K]
- \(V_0\): initial volume [l]
- \(\Delta V\): volume alternation [l]
- \(\beta_T\): expansion coefficient

Pressure increase caused by temperature rise

(without volumetric compensation)

\[
\Delta V = 0.7 \cdot 10^{-6} \cdot \Delta p = 0.7 \cdot 10^{-3} \cdot \Delta \vartheta
\]

i.e. \(\Delta \vartheta = 1 \text{ K} \Leftrightarrow \Delta p = 10 \text{ bar}\)

Note: A temperature rise of trapped oil volume will cause a pressure increase! (i.e. a pressure limiting valve will be required sometimes)

Guideline: The pressure will rise by approx. 10 bar for 1 K of temperature increase.

Equipment

Hydraulic accumulators

Pressure alternations,

isotherm (slow)

adiabatic (quick)

Hydraulic accumulators are intended for the supply of pressurized fluid during sudden demands (quick, adiabatic pressure alternations), compensation of leakage losses or to dampen oscillations (slow, isotherm pressure alternations).

Basic equations:

\[
p_f = 1.1 p_0
\]

isotherm (slow)

\[
\Delta V = V_1 \left(1 - \frac{p_1}{p_2} \right)
\]

adiabatic (quick)

\[
\Delta V = V_1 \left(1 - \left(\frac{p_1}{p_2} \right)^{0.71} \right)
\]

- \(p_f\): filling pressure for the gas [bar]
- \(p_1\): lower operating pressure [bar]
- \(p_2\): upper operating pressure [bar]
- \(V_1\): initial volume [l]
- \(\Delta V\): volume alternation [l]
Cavitation

Approx. 9 % (volumetric) air are solved in oil at atmospheric pressure. There is the danger of bubble cavitation during atmospheric pressure below 0.2 bar. These situations can occur, accompanied by sudden noise, during suction process of pumps and cylinders as well as at extreme throttle sections. The hydraulic components where this occurs will show increased wear.

Equipment

Formulas and description

Thermal level
Dissipation power and oil temperature

The hydraulic power losses in a hydraulic system result in a temperature rise of the fluid and the equipment which is partly radiated to the surroundings via the surface of the system. They roughly amount 20 - 30% of the induced performance. The induced and the radiated heat will balance at some point after the warm-up of the system.

Basic equations:

\[P_v = 0.3 \cdot P_{\text{hydr}} \]

\[\vartheta_{\text{max}} = \vartheta_{\text{amb}} + C \cdot \frac{P_v}{A} \]

Surface with unhindered circulation \(c \approx 75 \)
Surface with bad circulation \(c \approx 120 \)
with fan \((v \approx 2 \text{ m/s}) \) \(c \approx 40 \)
Oil/water radiator \(c \approx 5 \)

P\(_v\): performance loss, transformed in heat [kW]
P\(_{\text{hydr}}\): hydraulic performance [kW]
\(\vartheta_{\text{max}}\): max. fluid temperature [°C]
\(\vartheta_{\text{amb}}\): ambient temperature [°C]
A: surface of the system (tank, pipes etc.) [m\(^2\)]

Simplified:

\[\vartheta_{\text{max}} = \vartheta_{\text{amb}} + C \cdot \frac{0.3 \cdot P_{\text{hydr}} [\text{kW}]}{A [\text{m}^2]} \]
Conversion table

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Codings</th>
<th>Unit</th>
<th>≈</th>
<th>Factor X</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>p</td>
<td>1 (\frac{N}{mm^2})</td>
<td>=</td>
<td>10</td>
<td>bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 MPa</td>
<td>=</td>
<td>10</td>
<td>bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{kg}{cm^2})</td>
<td>=</td>
<td>1</td>
<td>bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 psi</td>
<td>=</td>
<td>0.07</td>
<td>bar</td>
</tr>
<tr>
<td>Force</td>
<td>F</td>
<td>1 (\frac{kg \cdot m}{s^2})</td>
<td>=</td>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 lbf</td>
<td>=</td>
<td>4.45</td>
<td>N</td>
</tr>
<tr>
<td>Length, travel, stroke</td>
<td>l, s, h</td>
<td>1 in</td>
<td>=</td>
<td>25.4</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 ft</td>
<td>=</td>
<td>304.8</td>
<td>mm</td>
</tr>
<tr>
<td>Torque</td>
<td>M</td>
<td>1 (\frac{kg \cdot m^2}{s^2})</td>
<td>=</td>
<td>1</td>
<td>Nm</td>
</tr>
<tr>
<td>Performance</td>
<td>P</td>
<td>1 PS, 1 hp</td>
<td>=</td>
<td>0.74</td>
<td>kW</td>
</tr>
<tr>
<td>Area</td>
<td>A</td>
<td>1 ft(^2)</td>
<td>=</td>
<td>92903</td>
<td>mm(^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 in(^2)</td>
<td>=</td>
<td>645.16</td>
<td>mm(^2)</td>
</tr>
<tr>
<td>Volume</td>
<td>V</td>
<td>1 ft(^3)</td>
<td>=</td>
<td>28.92</td>
<td>l</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 in(^3)</td>
<td>=</td>
<td>1.64 \times 10(^{-2})</td>
<td>l</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 UK gal</td>
<td>=</td>
<td>4.55</td>
<td>l</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 US gal</td>
<td>=</td>
<td>3.79</td>
<td>l</td>
</tr>
<tr>
<td>Temperature</td>
<td>T, (\theta)</td>
<td>5 ((\degree F - 32)/9)</td>
<td>=</td>
<td>1</td>
<td>(\degree C)</td>
</tr>
<tr>
<td>Weight</td>
<td>m</td>
<td>1 lb</td>
<td>=</td>
<td>0.45</td>
<td>kg</td>
</tr>
<tr>
<td>Cinematic viscosity</td>
<td>v</td>
<td>1 cST</td>
<td>=</td>
<td>1 (\frac{mm^2}{s})</td>
<td></td>
</tr>
</tbody>
</table>
Contact offices and representatives

Germany

Headquarter
HAWE Hydraulik SE
Streifeldstr. 25
D-81673 München
PO Box 800804 D-81608 München
Tel. +49 89 37 91 00 - 1000
Fax: +49 89 37 91 00 - 9 1000
e-mail: info@hawe.de
www.hawe.de

Office Filderstadt
Felix-Wankel-Str. 41
D-70794 Filderstadt
Tel. +49 89 37 91 00 - 5000
Fax: +49 89 379100 - 9 5000
e-mail: vertrieb-filderstadt@hawe.de

Office Norderstedt
Werkstraße 6
D-22844 Norderstedt
Tel. +49 89 37 91 00 - 53 00
Fax: +49 89 37 91 00 - 9 53 00
e-mail: vertrieb-norderstedt@hawe.de

Office Kassel
Frankfurter Str. 229 b
D-34134 Kassel
Tel. +49 89 37 91 00 - 51 00
Fax: +49 89 37 91 00 - 9 51 00
e-mail: vertrieb-kassel@hawe.de

Office Hennef
Bonner Str. 12 d
D-53773 Hennef
Tel. +49 89 37 91 00 - 52 00
Fax: +49 89 37 91 00 - 9 52 00
e-mail: vertrieb-hennef@hawe.de

Office Freising
Kulturstr. 44
D-81653 Freising
Tel. +49 89 37 91 00 - 43 80
Fax: +49 89 37 91 00 - 9 43 80
e-mail: vertrieb-freising@hawe.de
International

For countries that are not listed:
HAWE Hydraulik SE
Mr. Werner Windstetter
Streitfeldstraße 25
D-81673 München
Tel. +49 89 37 91 00-0, -12 81
Fax: +49 89 37 91 00-12 69, -12 49
e-mail: info@hawe.de, w.windstetter@hawe.de
www.hawe.de

Egypt
Egyptian Hydraulic Engineering
Mr. Sameh Zeyada
22 Saudi Buildings Al - Sawah 11281
Cairo, Egypt
Tel. +20 224 5018-90
Fax: +20 224 5018-92
e-mail: s.zeyada@ehydrothermal.com
www.ehhydrothermal.com

Angola
ZANANCHO HIDRÁULIC de ANGOLA
Mr. Filipe Armada
Estrada Direita do Zango, Polo Indústrial de Viana / Zona Nova
Viana, Angola
Tel. +244 222 200 26 54
Fax: +244 222 012 059
e-mail: geral@zananchohidraulico.com
www.zanancho.pt

Argentina
FLUTECNO, S.R.L.
Mr. Juan Emina
Avda. Belgrano, 615, 1º Of. G, C1092AAG Buenos Aires
Argentina
Tel. +54 11 43435168
Fax: +54 11 43421083
e-mail: ventas@flutecno.com.ar
www.flutecno.com.ar

Australia
Hawe Hydraulics Australia PTY Ltd
Mr. Steve Lettice
5/ 83-85 Montague Street
North Wollongong NSW 2500
PO Box 618 Fairymeadow 2520
Tel. +61 242 257 222
Fax: +61 242 297 622
e-mail: info@hawe.com.au

Belgium
Doedijns Hydraulics N.V. België
Mr. Jelle Beuker
Langveld Park 10, P. Basteleusstraat 2
B-1600 Sint-Pieters-Leeuw
Tel. +32 23 617 401
Fax: +32 23 617 405
e-mail: jelle.beuker@doedijns.com
www.doedijns.com

Bosnia-Herzigowina
see
HAWE Hidravlika d.o.o. / Slovenia

Brazil
HIDRACOMP, LTDA
Mr. Lélio Ferrari
Rua Dr.Edgard Magalhaes Noronha, 704
BR-03480-000 Vila Nova York, Sao Paulo
Tel. +55 11 6721-1113
Fax: +55 11 6721-9302
e-mail: hidracomp@hidracomp.com.br
www.hidracomp.com.br

Bulgaria
Eurofluid Hydraulik Bulgaria OOD
Mr. Alexander Erschov
Vojeli Str. 3
BG-6100 Kazanlak
Tel. +359 431 634 77, +359 431 621 73
Fax: +359 431 644 74
e-mail: ehb_bg@abv.bg

Chile
MARCO Industrial SPA
Mr. Rodolfo Cerda R.
Los Gobelinos 2584, Renca, Santiago
Chile
Tel. +56 2 782 4400
Fax:
e-mail: rcerda@marco.cl
www.grupomarco.cl
China
HAWE Oil-Hydraulic Technology (Shanghai) Co., Ltd.
Ms. Wang Xiaodan
155 Jindian Road
201206 PuDong / Shanghai, P.R. China
Tel. +86 21 589 996 78
Fax: +86 21 505 508 36
e-mail: info@hawe.com.cn
www.hawe.de

Denmark
Fritz Schur Teknik AS
Mr. Jørgensen
Sydmarken 46
DK-2860 Sæborg
Tel. +45 70 20 1616
Fax: +45 70 20 1615
e-mail: mail@fst.dk
www.fst.dk

Dubai
Doedijns Middle East and Africa FZE
Mr. Martijn Schols
Jebel Ali Free, Zone
Dubai UAE
PO Box # 261894
Tel. +971 4 815 7800
e-mail: martijn.schols@doedijns.com
www.dgi-corp.com

Ecuador
Marco Ecuador
Mr. Jorge Sánchez
Av. Juan Tanca Marengo Km 0.5, No. 305
Guayaquil
Tel. +59 3 4229 2763
e-mail: jsanchez@marco.com.ec
www.marco.com.ec

Finland
HAWE Finland Oy
Mr. Mikko Vainio
Kellonsuittajantie 2
FIN-02770 Espoo
Tel. +358 10 82126-00
Fax: +358 10 82126-10
e-mail: info.finland@hawe.fi
www.hawe.fi

France
HAWE-Otelec S.A.S.
Mr. Frédéric Chalot
2 Rue Parc des Vergers, Parc d’activités des Vergers
F-91250 TIGÉRY
Tel. +33 169 471 010
Fax: +33 160 792 048
e-mail: hawe.otelec@hawe-otelec.fr

Greece
G. & I. Pangakis S.A.
Mr. Iannis Pangakis
Konstantinoupoleos 167
GR-10441 Athens
Tel. +30 210 88 10 750
Fax: +30 210 88 18 659
e-mail: info@pangakis.gr
www.pangakis.gr

Great Britain
Koppen & Lethem Ltd.
Mr. Allan Woodhead
3 Glenholm Park, Northern Rd. Industrial Estate, Newark
GB-Nottinghamshire NG24 2EG
Tel. +44 1636 677 679 4
Fax: +44 1636 667 105 5
e-mail: sales@koppen-lethem.co.uk
www.koppen-lethem.co.uk

Hong Kong
Melchers (H.K.) Ltd., Industrial Materials Dept.
Mr. Benjamin Becker
1210 Shun Tak Centre West Tower, 168-200 Connaught Road Central,
Hong Kong
Tel. +85 22 58 91 54-4
Fax: +85 22 55 96 55-2
e-mail: bbecker@melchers.com.hk

India
HAWE Hydraulics Pvt. Ltd.
Mrs. Cynthia Richard
No. 68, Industrial Suburb 2nd Stage, Yeshwanthpur
Bangalore 560 022, India
Tel. +91 80 419 520 00
Fax: +91 80 419 520 01
e-mail: contactus@haweindia.com

Indonesia
see
Singapore
Iraq
see
Doedijns Middle East and Africa FZE / Dubai

Israel
LYA Hydraulics & Pneumatics Ltd.
Mr. Yossi Shapiro
9 Lev Pesach St. North Industrial Zone
IL-71293 Lod, Israel
Tel. +97 27 32 57 00 00
Fax: +97 27 32 57 00 99
e-mail: yossi@lya.co.il
www.lya.co.il

Italy
HAWE-Italiana S.r.l.
Mr. Udo Wolter
Via C. Cantù, 8
I-20092 Cinisello Balsamo (Milano)
Tel. +39 02 399 75-100
Fax: +39 02 399 75-101
e-mail: info@haweit.it

Japan
HAWE Japan Ltd.
Mr. Takao Yasuda
2-2, Yoshimoto-cho, Nakagawa-ku
J-Nagoya, Aichi, 454-0825, Japan
Tel. +81 52 365-1655
Fax: +81 52 365-1656
e-mail: info@hawe.co.jp
www.hawe.de

Korea
HAWE Korea Co., Ltd.
Mr. WonSam Cho
27, 1-gil, 4-sandan, Seobuk-gu, Cheon-an,
Chungnam 331-814, South Korea
Tel. +82 41 585-3800
Fax: +82 41 585-3801
e-mail: info@hawe.kr
www.hawe.kr

Croatia
see
HAWE Hidravlika d.o.o. / Slovenia

Kuwait
see
Doedijns Middle East and Africa FZE / Dubai

Malaysia
see
Singapore

Morocco
Hyrautech Industrie Mécanique & Hydraulique Industrielles
Mr. Aziz Lakhdar
Rte.110 Km 14.800 Z.I Zenata
Casablanca
Tel. +21 2 624 026 887
e-mail: hyrautech.ind@gmail.com

Macedonia
see
HAWE Hidravlika d.o.o. / Slovenia

Mexico
see
HAWE North America Inc. / USA

New Zealand
see
Hawe Hydraulics Australia PTY Ltd / Australia

Netherlands
Doedijns Hydraulics B.V.
Mr. Jelle Beuker
P.O.Box 179
NL-2740 AD Waddinxveen
Tel. +31 182 302 888
Fax: +31 182 302 777
e-mail: jelle.beuker@doedijns.com
www.doedijns.com
Norway
Servi Hydranor AS
Mr. Børre Kleven
Haugenveien 10, Postboks 3230
N-1402 Ski
Tel. +47 64 97 97 97
Fax: +47 64 97 98 99
e-mail: post@servi.no
www.servi.no

Oman
see
Doedijns Middle East and Africa FZE / Dubai

Austria
HAWE Österreich GmbH
Mr. Andreas Schöller
Kettenstraße 5
A-3100 St. Pölten
Tel. +43 274 224 577
Fax: +43 274 224 588
e-mail: office@hawe.at
www.hawe.at

Peru
Marco Peruana S.A.
Mr. Helmut Castro Aquino
Av. Sáenz Pena 1439, Callao 1
Peru
Tel: +51 1 201 3800
Fax: +51 146 594 97
e-mail: hcastro@marco.com.pe
www.marco.com.pe

Philippines
see
Singapore

Poland
RDL Hydraulics Sp. z o.o
Mrs. Beata Block, Mr. Marcin Liss
Nowy Tuchom 10
PL-80-209 Chwaszczyno
Tel. +48 58 671 51 61
Fax: +48 58 671 51 64
e-mail: handlowy@rockfin.com.pl
www.rockfin.dl.pl

Portugal
ZANANCHO-HIDRÁULICO Lda.
Mr. Jorge Valente
Estrada Mata da Torre, 352 A-B-C Edificio Valente-Tires
PT-2785-291 São Domingos Rana, Lisboa
Tel. +35 121 444 037 4
Fax: +35 121 444 326 5
e-mail: jorge.valente@zananco.pt
www.zananco.pt

Qatar
see
Doedijns Middle East and Africa FZE / Dubai

Romania
FLUPEC S.R.L. Engineering & Trading
Mr. Daniel Vasile, Mr. Adrian Mihu
Str. Zidului Nr. 3
RO-550324 Sibiu
Tel. +40 269 206 138
Fax: +40 269 210 700
e-mail: office@flupec.ro
www.flupec.ro

Russia
InterPromTechnika
Mr. Artur Ivanov
Ulitsa Savushkina 83/3
197374 St. Petersburg
Tel. +7 812 318 02 92
Fax: +7 812 318 02 92
e-mail: info@interpromtechnika.ru
www.interpromtechnika.ru

Saudi Arabia
Dalil Al Souk Est.
Mr. Eng. Omar S. Alessa
P.O. Box 5874 Riyadh 11432
Saudi Arabia
Tel. +96 61 44 64 14-5
Fax: +96 61 44 64 18-9
e-mail: o.alessa@dalilalsouk.com
www.dalilalsouk.com
Sweden
PMC Hydraulics AB
Mr. Mikael Brunell
Askims Verkstadsväg 15
Box 1013, S-436 21 Askim
Tel. +46 31 289 840
Fax: +46 31 286 401
e-mail: info@pmchydraulics.se
www.pmchydraulics.se

Switzerland
HAWE-HYDRATEC AG
Mr. Kurt Hess
Dorfstrasse 37
CH-6035 Perlen
Tel. +41 417 474 000
Fax: +41 417 474 010
e-mail: info@hawe-hydratec.ch
www.hawe-hydratec.ch

Serbia / Montenegro
see
HAWE Hidraulika d.o.o. / Slovenia

Singapore
HAWE Hydraulik Singapore Pte. Ltd.
Mr. Chee Hoong Chan
25 International Business Park, #01-59/60, German Centre
Singapore 609916, Singapore
Tel. +65 656 283 61
Fax: +65 656 283 60
e-mail: chan.ch@hawe.com.sg
www.hawe.de

Slovakia Republic
Eurofluid Hydraulik SR s.r.o.
Mr. Andrej Galád
Racianska 71 (Areal VUZ)
SK-852 02 Bratislava 02
Tel. +42 12 49 10 22 66
Fax: +42 12 44 25 90 82
e-mail: eurofluid@eurofluid.sk
www.eurofluid.sk

Slovenia
HAWE Hidraulika d.o.o.
Mr. Kristian Les
Petrovče 225
SI-3301 Petrovče
Tel. +386 371 348 80
Fax: +386 371 348 88
e-mail: office@hawe.si
www.hawe.de

Spain
HAWE Hidráulica, S.L.U.
Mr. Antonio Polo
Polig. Ind. Almeda, c/. del Progrés, 139-141
E-08940 Cornell de Llobregat, Barcelona, Spain
Tel. +34 934 751 370
Fax: +34 934 751 371
e-mail: hawe.hidraulica@hawe.es
www.hawe.de

South Africa
WALCH Engineering Co. (PTY) Ltd.
Mr. Marc Walch
6, Field Road, Lilianton, Boksburg North
SA-Witwatersrand 1467, TVL
Tel. +27 118 261 411
Fax: +27 118 266 129
e-mail: walch@mweb.co.za

Taiwan
S.G.D. Engineering Co., LTD
Mr. Wan-Chin Yin, Mr. K. P. Chen
No.139-5, Minchung St., Daliao District
Kaohsiung City 831, Taiwan (R.O.C.)
Tel. +886 773 532 77
Fax: +886 773 538 77
e-mail: kpchen@sgdeng.com.tw
www.sgdeng.com.tw

Thailand
Aerofluid Co. Ltd.
Mr. Kritsda
169/4 - 169/5 Moo 1, Rangsit-Nakhonnayok rd., Lampakkud
Thanyaburi
12110 Pathumthanee, Thailand
Tel. +66 257 729 99
Fax: +66 257 727 00
e-mail: kritsda@aerofluid.com
www.aerofluid.com
Czech Republic
Eurofluid-Hydraulik CR, s.r.o.
Mr. Martin Hvězda
Chrášťany 9
CZ-270 01 Knezeves u Rakovníka
Tel. +42 031 358 262 0, +42 031 353 101 6, +42 031 358 261 5, +42 031 353 101 7
Fax: +42 031 358 261 6
e-mail: info@eurofluid.cz
www.eurofluid.cz

Turkey
Entek Otomasyon Ürünleri San. ve Tic. A.S.
Mr. Dogan K. Hacihamet
Mahmutbey Mah. Tasocagi Yolu Cad. No: 9 Entek Plaza
Bagcilar - Istanbul 34218
Tel. +90 850 201 4141
e-mail: dogan.hacihamet@entek.com.tr

Ukraine
Izumrud Ltd.
Mrs. Lesia Konukh
Dekabristov Str. 7
UK-02121 Kiev, Ukraine
Tel. +38 044 560-3367
Fax: +38 044 563-6160
e-mail: viklad@ukr.net
www.qidravlika.kiev.ua

Hungary
Jankovits Hidraulika Kft.
Mr. István Jankovits
Juharfa u. 20
HU-9027 Győr Ipari Park
Tel. +36 965 120 60
Fax: +36 96 4 195 37
e-mail: info@jankovitshidraulika.hu

USA
Hawe North America Inc.
Mrs. Dani Boon
9009-K Perimeter Woods Drive
Charlotte, NC 28216
Tel. +1 704 509-1599
Fax: +1 704 509-6302
e-mail: info@haweusa.com
www.haweusa.com

United Arab Emirates
see
Doedijns Middle East and Africa FZE / Dubai